InGaN/GaN multiple quantum well green light-emitting diodes prepared by temperature ramping

T. C. Wen, S. J. Chang, Y. K. Su, L. W. Wu, C. H. Kuo, W. C. Lai, J. K. Sheu, T. Y. Tsai

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


High-quality InGaN/GaN multiple-quantum well (MQW) light-emitting diode (LED) structures were prepared by a temperature-ramping method during metal-organic chemical-vapor deposition (MOCVD) growth. Two photoluminescence (PL) peaks, one originating from well-sensitive emission and one originating from an InGaN quasi-wetting layer on the GaN-barrier surface, were observed at room temperature (RT). The observation of high-order double-crystal x-ray diffraction (DCXRD) satellite peaks indicates that the interfaces between InGaN-well layers and GaN-barrier layers were not degraded as we increased the growth temperature of the GaN-barrier layers. With a 20-mA and 160-mA current injection, it was found that the output power could reach 2.2 mW and 8.9 mW, respectively. Furthermore, it was found that the reliability of the fabricated green LEDs prepared by temperature ramping was also reasonably good.

Original languageEnglish
Pages (from-to)419-422
Number of pages4
JournalJournal of Electronic Materials
Issue number5
Publication statusPublished - 2003 May

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint Dive into the research topics of 'InGaN/GaN multiple quantum well green light-emitting diodes prepared by temperature ramping'. Together they form a unique fingerprint.

Cite this