Abstract
The mechanisms by which insulin-like growth factor 1 (IGF-1) cooperates with membrane ion transport system to modulate epithelial cell motility and proliferation remain poorly understood. Here, we investigated the role of electroneutral KCl cotransport (KCC), in IGF-1-dependent invasiveness and proliferation of cervical and ovarian cancer cells. IGF-1 increased KCC activity and mRNA expression in a dose- and time-dependent manner in parallel with the enhancement of regulatory volume decrease. IGF-1 treatment triggers phosphatidylinositol 3-kinase and mitogen-activated protein kinase cascades leading to the activation of Akt and extracellular signal-regulated kinase1/2 (Erk1/2), respectively. The activated Erk1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling pathways are differentially required for IGF-1-stimulated biosynthesis of KCC polypeptides. Specific reduction of Erk1/2 protein levels with small interference RNA abolishes IGF-1-stimulated KCC activity. Pharmacological inhibition and genetic modification of KCC activity demonstrate that KCC is necessary for IGF-1-induced cancer cell invasiveness and proliferation. IGF-1 and KCC co-localize in the surgical specimens of cervical cancer (n = 28) and ovarian cancer (n = 35), suggesting autocrine or paracrine IGF-1 stimulation of KCC production. Taken together, our results indicate that KCC activation by IGF-1 plays an important role in IGF-1 signaling to promote growth and spread of gynecological cancers.
Original language | English |
---|---|
Pages (from-to) | 40017-40025 |
Number of pages | 9 |
Journal | Journal of Biological Chemistry |
Volume | 279 |
Issue number | 38 |
DOIs | |
Publication status | Published - 2004 Sept 17 |
All Science Journal Classification (ASJC) codes
- Biochemistry
- Molecular Biology
- Cell Biology