Intra-ONU bandwidth allocation games in integrated EPON/WiMAX networks

Hui Tang Lin, Ying You Lin

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Integration of Ethernet passive optical network (EPON) and WiMAX technologies is regarded as a promising solution for next-generation broadband access networks. In implementing such networks, efficient bandwidth allocation schemes are essential to satisfy quality of service (QoS) and fairness requirements of various traffic classes. Existing proposals for solving the bandwidth allocation problem in EPON/WiMAX networks neglect interactions between the self-interested EPON and WiMAX service providers (WSPs). Accordingly, this study proposes a two-stage game-theoretic framework for the intra-ONU bandwidth allocation process where the interactions between the EPON and WSPs are taken into account. In the first stage of the proposed framework, a fair and efficient sharing of the available upstream bandwidth between the EPON and WiMAX networks is determined using two market models (i.e., noncooperative and cooperative). In the second stage, the bandwidth allocation obtained from the first stage is distributed among the different traffic classes within the Ethernet and WiMAX networks in accordance with their QoS requirements by means of a Nash bargaining game. Simulation results show that the proposed game-theoretic framework efficiently allocates bandwidth under different market models while simultaneously ensuring proportional fairness among the various traffic classes for the corresponding networks.

Original languageEnglish
Article number6533948
Pages (from-to)609-620
Number of pages12
JournalJournal of Optical Communications and Networking
Volume5
Issue number6
DOIs
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Intra-ONU bandwidth allocation games in integrated EPON/WiMAX networks'. Together they form a unique fingerprint.

Cite this