Inverse hyperbolic thermoelastic analysis of a functionally graded hollow circular cylinder in estimating surface heat flux and thermal stresses

Yu Ching Yang, Wen Lih Chen, Huann Ming Chou, Jose Luis Leon Salazar

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)

Abstract

In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent inner-wall heat flux of a hollow cylinder from the knowledge of temperature measurements taken within the medium. The inverse solutions have been justified through the numerical experiments in two specific cases to determine the unknown heat flux. Temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors upon the precision of the estimated results is also investigated. Results show that excellent estimation on the time-dependent heat flux can be obtained for the test cases considered in this study. Once heat flux variation is accurately estimated, the evolution of temperature, displacement, and stress distributions can be calculated in great precision.

Original languageEnglish
Pages (from-to)125-133
Number of pages9
JournalInternational Journal of Heat and Mass Transfer
Volume60
Issue number1
DOIs
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Inverse hyperbolic thermoelastic analysis of a functionally graded hollow circular cylinder in estimating surface heat flux and thermal stresses'. Together they form a unique fingerprint.

Cite this