Iron release profile of silica-modified zero-valent iron nps and their implication in cancer therapy

Li Xing Yang, Ya Na Wu, Pei Wen Wang, Wu Chou Su, Dar Bin Shieh

Research output: Contribution to journalArticle

Abstract

To evaluate the iron ion release profile of zero-valent iron (ZVI)-based nanoparticles (NPs) and their relationship with lysosomes in cancer cells, silica and mesoporous silica-coated ZVI NPs (denoted as ZVI@SiO2 and ZVI@mSiO2) were synthesized and characterized for the following study of cytotoxicity, intracellular iron ion release, and their underlying mechanisms. ZVI@mSiO2 NPs showed higher cytotoxicity than ZVI@SiO2 NPs in the OEC-M1 oral cancer cell line. In addition, internalized ZVI@mSiO2 NPs deformed into hollow and void structures within the cells after a 24-h treatment, but ZVI@SiO2 NPs remained intact after internalization. The intracellular iron ion release profile was also accordant with the structural deformation of ZVI@mSiO2 NPs. Burst iron ion release occurred in ZVI@mSiO2-treated cells within an hour with increased lysosome membrane permeability, which induced massive reactive oxygen species generation followed by necrotic and apoptotic cell death. Furthermore, inhibition of endosome-lysosome system acidification successfully compromised burst iron ion release, thereby reversing the cell fate. An in vivo test also showed a promising anticancer effect of ZVI@mSiO2 NPs without significant weight loss. In conclusion, we demonstrated the anticancer property of ZVI@mSiO2 NPs as well as the iron ion release profile in time course within cells, which is highly associated with the surface coating of ZVI NPs and lysosomal acidification.

Original languageEnglish
Article number4336
JournalInternational journal of molecular sciences
Volume20
Issue number18
DOIs
Publication statusPublished - 2019 Sep

Fingerprint

Silicon Dioxide
therapy
Iron
cancer
Silica
silicon dioxide
iron
profiles
Nanoparticles
Neoplasms
nanoparticles
Therapeutics
Ions
lysosomes
Lysosomes
ions
Acidification
Cells
Cytotoxicity
cells

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this

@article{a1718ad8120b4b0691d884c11568f8b5,
title = "Iron release profile of silica-modified zero-valent iron nps and their implication in cancer therapy",
abstract = "To evaluate the iron ion release profile of zero-valent iron (ZVI)-based nanoparticles (NPs) and their relationship with lysosomes in cancer cells, silica and mesoporous silica-coated ZVI NPs (denoted as ZVI@SiO2 and ZVI@mSiO2) were synthesized and characterized for the following study of cytotoxicity, intracellular iron ion release, and their underlying mechanisms. ZVI@mSiO2 NPs showed higher cytotoxicity than ZVI@SiO2 NPs in the OEC-M1 oral cancer cell line. In addition, internalized ZVI@mSiO2 NPs deformed into hollow and void structures within the cells after a 24-h treatment, but ZVI@SiO2 NPs remained intact after internalization. The intracellular iron ion release profile was also accordant with the structural deformation of ZVI@mSiO2 NPs. Burst iron ion release occurred in ZVI@mSiO2-treated cells within an hour with increased lysosome membrane permeability, which induced massive reactive oxygen species generation followed by necrotic and apoptotic cell death. Furthermore, inhibition of endosome-lysosome system acidification successfully compromised burst iron ion release, thereby reversing the cell fate. An in vivo test also showed a promising anticancer effect of ZVI@mSiO2 NPs without significant weight loss. In conclusion, we demonstrated the anticancer property of ZVI@mSiO2 NPs as well as the iron ion release profile in time course within cells, which is highly associated with the surface coating of ZVI NPs and lysosomal acidification.",
author = "Yang, {Li Xing} and Wu, {Ya Na} and Wang, {Pei Wen} and Su, {Wu Chou} and Shieh, {Dar Bin}",
year = "2019",
month = "9",
doi = "10.3390/ijms20184336",
language = "English",
volume = "20",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "18",

}

TY - JOUR

T1 - Iron release profile of silica-modified zero-valent iron nps and their implication in cancer therapy

AU - Yang, Li Xing

AU - Wu, Ya Na

AU - Wang, Pei Wen

AU - Su, Wu Chou

AU - Shieh, Dar Bin

PY - 2019/9

Y1 - 2019/9

N2 - To evaluate the iron ion release profile of zero-valent iron (ZVI)-based nanoparticles (NPs) and their relationship with lysosomes in cancer cells, silica and mesoporous silica-coated ZVI NPs (denoted as ZVI@SiO2 and ZVI@mSiO2) were synthesized and characterized for the following study of cytotoxicity, intracellular iron ion release, and their underlying mechanisms. ZVI@mSiO2 NPs showed higher cytotoxicity than ZVI@SiO2 NPs in the OEC-M1 oral cancer cell line. In addition, internalized ZVI@mSiO2 NPs deformed into hollow and void structures within the cells after a 24-h treatment, but ZVI@SiO2 NPs remained intact after internalization. The intracellular iron ion release profile was also accordant with the structural deformation of ZVI@mSiO2 NPs. Burst iron ion release occurred in ZVI@mSiO2-treated cells within an hour with increased lysosome membrane permeability, which induced massive reactive oxygen species generation followed by necrotic and apoptotic cell death. Furthermore, inhibition of endosome-lysosome system acidification successfully compromised burst iron ion release, thereby reversing the cell fate. An in vivo test also showed a promising anticancer effect of ZVI@mSiO2 NPs without significant weight loss. In conclusion, we demonstrated the anticancer property of ZVI@mSiO2 NPs as well as the iron ion release profile in time course within cells, which is highly associated with the surface coating of ZVI NPs and lysosomal acidification.

AB - To evaluate the iron ion release profile of zero-valent iron (ZVI)-based nanoparticles (NPs) and their relationship with lysosomes in cancer cells, silica and mesoporous silica-coated ZVI NPs (denoted as ZVI@SiO2 and ZVI@mSiO2) were synthesized and characterized for the following study of cytotoxicity, intracellular iron ion release, and their underlying mechanisms. ZVI@mSiO2 NPs showed higher cytotoxicity than ZVI@SiO2 NPs in the OEC-M1 oral cancer cell line. In addition, internalized ZVI@mSiO2 NPs deformed into hollow and void structures within the cells after a 24-h treatment, but ZVI@SiO2 NPs remained intact after internalization. The intracellular iron ion release profile was also accordant with the structural deformation of ZVI@mSiO2 NPs. Burst iron ion release occurred in ZVI@mSiO2-treated cells within an hour with increased lysosome membrane permeability, which induced massive reactive oxygen species generation followed by necrotic and apoptotic cell death. Furthermore, inhibition of endosome-lysosome system acidification successfully compromised burst iron ion release, thereby reversing the cell fate. An in vivo test also showed a promising anticancer effect of ZVI@mSiO2 NPs without significant weight loss. In conclusion, we demonstrated the anticancer property of ZVI@mSiO2 NPs as well as the iron ion release profile in time course within cells, which is highly associated with the surface coating of ZVI NPs and lysosomal acidification.

UR - http://www.scopus.com/inward/record.url?scp=85071752344&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85071752344&partnerID=8YFLogxK

U2 - 10.3390/ijms20184336

DO - 10.3390/ijms20184336

M3 - Article

C2 - 31487938

AN - SCOPUS:85071752344

VL - 20

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 18

M1 - 4336

ER -