K-means based RANSAC Algorithm for ICP Registration of 3D Point Cloud with Dense Outliers

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this work, a strategy for the 3D point cloud registration in the presence of multiple groups of outliers is addressed. Regarding to the point cloud registration, the iterative closed point (ICP) is a frequently used algorithm. Many related works have pointed out that robust point cloud matching can be achieved by using correspondence weight design or some other feature extraction techniques. However, it is interesting that whether it is possible to use traditional point-to-point ICP to deal with the point cloud registration in the presence of dense outlier clusters even without the aid of ICP weight design or point cloud feature extraction. To solve this question, a K-means based random sample consensus (RANSAC) strategy is presented. For a given data point clouds with high dense outliers, the K-means is firstly applied to cluster the point clouds. After that, the registration process cooperates with RANSAC's random cluster sampling for ICP matching, and calculates the sample with the highest matching score as the best candidate for point cloud matching. Here, we name this procedure as K-means based RANSAC ICP (KR-ICP). Through this point cloud registration strategy, the influence of multiple clusters of dense outliers on ICP registration can be avoided. Finally, this study verified the feasibility of this strategy via simulations. The proposed scheme can be extended to the related applications of point cloud initial pose alignment.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665433280
DOIs
Publication statusPublished - 2021
Event8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021 - Penghu, Taiwan
Duration: 2021 Sept 152021 Sept 17

Publication series

Name2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021

Conference

Conference8th IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021
Country/TerritoryTaiwan
CityPenghu
Period21-09-1521-09-17

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Science Applications
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Instrumentation

Fingerprint

Dive into the research topics of 'K-means based RANSAC Algorithm for ICP Registration of 3D Point Cloud with Dense Outliers'. Together they form a unique fingerprint.

Cite this