Abstract
This paper proposes a Maximum a Posteriori (MAP) based approach to jointly segment and identify an utterance with mixed languages. A statistical framework for language boundary detection and language identification is proposed. First, the MAP estimation is used to determine the boundary number and positions. Further, an LSA-based GMM and a VQ-based bi-gram language model are proposed to characterize a language and used for language identification. Finally, a likelihood ratio test approach is used to determine the optimal number of language boundaries. Experimental results show that the proposed approach exhibits encouraging potential in mixed-language segmentation and identification.
Original language | English |
---|---|
Journal | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
Volume | 1 |
Publication status | Published - 2004 Sept 28 |
Event | Proceedings - IEEE International Conference on Acoustics, Speech, and Signal Processing - Montreal, Que, Canada Duration: 2004 May 17 → 2004 May 21 |
All Science Journal Classification (ASJC) codes
- Software
- Signal Processing
- Electrical and Electronic Engineering