Large-scale edge waves generated by a moving atmospheric pressure

Chao An, Philip L.F. Liu, Seung Nam Seo

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Long waves generated by a moving atmospheric pressure distribution, associated with a storm, in coastal region are investigated numerically. For simplicity the moving atmospheric pressure is assumed to be moving only in the alongshore direction and the beach slope is assumed to be a constant in the on-offshore direction. By solving the linear shallow water equations we obtain numerical solutions for a wide range of physical parameters, including storm size (2a), storm speed (U), and beach slope (α). Based on the numerical results, it is determined that edge wave packets are generated if the storm speed is equal to or greater than the critical velocity, Ucr, which is defined as the phase speed of the fundamental edge wave mode whose wavelength is scaled by the width of the storm size. The length and the location of the positively moving edge wave packet is roughly Ut/2 ≤ y ≤ Ut, where y is in the alongshore direction and t is the time. Once the edge wave packet is generated, the wavelength is the same as that of the fundamental edge wave mode corresponding to the storm speed and is independent of the storm size, which can, however, affect the wave amplitude. When the storm speed is less than the critical velocity, the primary surface signature is a depression directly correlated to the atmospheric pressure distribution.

Original languageEnglish
Pages (from-to)42001
Number of pages1
JournalTheoretical and Applied Mechanics Letters
Volume2
Issue number4
DOIs
Publication statusPublished - 2012

All Science Journal Classification (ASJC) codes

  • Computational Mechanics
  • Environmental Engineering
  • Civil and Structural Engineering
  • Biomedical Engineering
  • Aerospace Engineering
  • Ocean Engineering
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Large-scale edge waves generated by a moving atmospheric pressure'. Together they form a unique fingerprint.

Cite this