Large Tunneling Magnetoresistance in VSe 2 /MoS 2 Magnetic Tunnel Junction

Jiaqi Zhou, Junfeng Qiao, Chun Gang Duan, Arnaud Bournel, Kang L. Wang, Weisheng Zhao

Research output: Contribution to journalArticlepeer-review

58 Citations (Scopus)


Two-dimensional (2D) van der Waals (vdW) materials provide the possibility of realizing heterostructures with coveted properties. Here, we report a theoretical investigation of the vdW magnetic tunnel junction (MTJ) based on VSe 2 /MoS 2 heterojunction, where the VSe 2 monolayer acts as a ferromagnet with roomerature ferromagnetism. We propose the concept of spin-orbit torque (SOT) vdW MTJ with reliable reading and efficient writing operations. The nonequilibrium study reveals a large tunneling magnetoresistance of 846% at 300 K, identifying significantly its parallel and antiparallel states. Thanks to the strong spin Hall conductivity of MoS 2 , SOT is promising for the magnetization switching of VSe 2 free layer. Quantum-well states come into being and resonances appear in MTJ, suggesting that the voltage control can adjust transport properties effectively. The SOT vdW MTJ based on VSe 2 /MoS 2 provides desirable performance and experimental feasibility, offering new opportunities for 2D spintronics.

Original languageEnglish
Pages (from-to)17647-17653
Number of pages7
JournalACS Applied Materials and Interfaces
Issue number19
Publication statusPublished - 2019 May 15

All Science Journal Classification (ASJC) codes

  • Materials Science(all)


Dive into the research topics of 'Large Tunneling Magnetoresistance in VSe 2 /MoS 2 Magnetic Tunnel Junction'. Together they form a unique fingerprint.

Cite this