Laser-induced thermal annealing of ch3 nh3 pbi3 perovskite microwires

Xiaoming Chen, Zixian Wang, Ren Jie Wu, Horng Long Cheng, Hsiang Chen Chui

Research output: Contribution to journalArticlepeer-review


Perovskite microwires have a larger surface-to-volume ratio and better photoelectric conversion efficiency than perovskite films. The degree of crystallization also affects the optoelectrical performances of perovskite microwires. Laser annealing was regarded as a tool for crystallization. High light absorption induced fast heating process. A 405 nm violet laser located near the absorption peak of typical perovskite films was employed as the annealing laser. In an in situ experimental design, the annealing laser beam was combined into the micro Raman measurement system. Real-time information of the annealing and crystallization was provided. Many excellent works were done, and typically needed offline optoelectronic measurements. An mW-level continuous-wave laser beam can provide enough kinetic energy for crystalline in perovskite microwires. The thermal distribution of the perovskite microwire under the annealing laser beams was considered here. Polarized Raman signals can provide evidence of the perovskite microwires crystallization. This work offered the novel approach of an on-site, real-time laser-induced thermal annealing design for per-ovskite microwires. This approach can be used in other material procedures. Intensity-dependent conditions were crucial for the annealing processes and analyzed in detail. The substrate effect was found. This proposed scheme provided integrated novel, scalable, and highly effective designs of perovskite-based devices.

Original languageEnglish
Article number30
Pages (from-to)1-7
Number of pages7
Issue number2
Publication statusPublished - 2021 Feb

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics
  • Instrumentation
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Laser-induced thermal annealing of ch<sub>3</sub> nh<sub>3</sub> pbi<sub>3</sub> perovskite microwires'. Together they form a unique fingerprint.

Cite this