TY - JOUR
T1 - Lentiviral transduction of face and limb flaps
T2 - Implications for immunomodulation of vascularized composite allografts
AU - Barone, Angelo A.Leto
AU - Zhou, Zhao Y.
AU - Hughes, Michael W.
AU - Park, Ryan
AU - Schulman, Ruth M.
AU - Lee, Steven
AU - Vidar, Evan N.
AU - Shiba, Travis L.
AU - Weber, Erin L.
AU - Cetrulo, Curtis L.
N1 - Copyright:
Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2012/2
Y1 - 2012/2
N2 - Background: Ex vivo introduction of an immunomodulatory transgene into a face or hand allograft may improve the risk-to-benefit ratio of vascularized composite allografts. Abrogation of the immunogenicity of the skin component of a face or hand allograft may decrease alloreactivity and permit the induction of immunologic tolerance. Proof-of-principle demonstrations of transduction of composite tissue have been established using adenoviral vectors, producing transient gene expression. The authors hypothesized that transduction, integration, and long-term expression of transgenes in a vascularized composite allograft could be achieved using lentiviral vectors. Methods: Ex vivo transduction of heterogeneous primary rat cell lines representative of a composite tissue flap's cellular architecture was performed using a luc-enhanced green fluorescent protein (eGFP) human immunodeficiency virus-1-based lentiviral vector. Ex vivo injections of rat superficial inferior epigastric artery flaps with the viral vector were performed intraarterially, intramuscularly, and intradermally. Results: Quantifiable reporter expression by flow cytometry (fluorescence-activated cell sorting) analysis and in vitro bioluminescence was observed. The luc-eGFP vector exhibited broad tropism and allowed transgene expression in relevant cell lines and throughout the flaps. Ex vivo intradermal transfection resulted in genomic integration and long-term constitutive gene expression (>150 days). Similarly, efficient intradermal transfection of face and hand flaps in a rat model corroborated this approach. Ex vivo intravascular perfusion of the vector proved inferior to intradermal injection. Conclusions: Intradermal delivery of the transgenes proved superior to intravascular perfusion. Optimization of this gene-delivery approach may allow long-term, constitutive expression of immunomodulatory proteins in face and hand allografts. Future goals include replacement of the luciferase and eGFP reporter genes with key immunomodulatory proteins.
AB - Background: Ex vivo introduction of an immunomodulatory transgene into a face or hand allograft may improve the risk-to-benefit ratio of vascularized composite allografts. Abrogation of the immunogenicity of the skin component of a face or hand allograft may decrease alloreactivity and permit the induction of immunologic tolerance. Proof-of-principle demonstrations of transduction of composite tissue have been established using adenoviral vectors, producing transient gene expression. The authors hypothesized that transduction, integration, and long-term expression of transgenes in a vascularized composite allograft could be achieved using lentiviral vectors. Methods: Ex vivo transduction of heterogeneous primary rat cell lines representative of a composite tissue flap's cellular architecture was performed using a luc-enhanced green fluorescent protein (eGFP) human immunodeficiency virus-1-based lentiviral vector. Ex vivo injections of rat superficial inferior epigastric artery flaps with the viral vector were performed intraarterially, intramuscularly, and intradermally. Results: Quantifiable reporter expression by flow cytometry (fluorescence-activated cell sorting) analysis and in vitro bioluminescence was observed. The luc-eGFP vector exhibited broad tropism and allowed transgene expression in relevant cell lines and throughout the flaps. Ex vivo intradermal transfection resulted in genomic integration and long-term constitutive gene expression (>150 days). Similarly, efficient intradermal transfection of face and hand flaps in a rat model corroborated this approach. Ex vivo intravascular perfusion of the vector proved inferior to intradermal injection. Conclusions: Intradermal delivery of the transgenes proved superior to intravascular perfusion. Optimization of this gene-delivery approach may allow long-term, constitutive expression of immunomodulatory proteins in face and hand allografts. Future goals include replacement of the luciferase and eGFP reporter genes with key immunomodulatory proteins.
UR - http://www.scopus.com/inward/record.url?scp=84856746474&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84856746474&partnerID=8YFLogxK
U2 - 10.1097/PRS.0b013e31823aeaeb
DO - 10.1097/PRS.0b013e31823aeaeb
M3 - Article
C2 - 22286422
AN - SCOPUS:84856746474
SN - 0032-1052
VL - 129
SP - 391
EP - 400
JO - Plastic and Reconstructive Surgery
JF - Plastic and Reconstructive Surgery
IS - 2
ER -