Levy-type solution for the analysis of nonuniform plates

S. Y. Lee, S. M. Lin

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The Levy-type solution for the static and dynamic response of an elastically restrained rectangular plate, resting on a nonuniform elastic Winkler foundation is presented. Both the flexural rigidity of the plate and the stiffness of the elastic foundation considered are uniform along the y-axis and variable along the x-axis. The static deflection and forced dynamic response of the plate are derived in Green's function form and expressed in terms of the four normalized fundamental solutions of the system. The frequency equation for the free vibration of the system is obtained from letting the denominator of the corresponding Green's function equal zero. If the coefficients of the governing characteristic different equation are in arbitrarily polynomial form, then the exact fundamental solutions in terms of power series can be obtained by the method of Frobenius. Finally, several examples are given to illustrate the analysis and the results are compared with those in the existing literature.

Original languageEnglish
Pages (from-to)931-939
Number of pages9
JournalComputers and Structures
Volume49
Issue number6
DOIs
Publication statusPublished - 1993 Dec 17

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Modelling and Simulation
  • Materials Science(all)
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Levy-type solution for the analysis of nonuniform plates'. Together they form a unique fingerprint.

  • Cite this