Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes

Hui Ting Huang, Chih Kai Liao, Wen-Tai Chiu, Shun-Fen Tzeng

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Astrocytes, a stellate-shape glial population in the central nervous system (CNS), maintain glutamate homeostasis in adult CNS by undergoing glutamate uptake at the synapse through their glutamate transporter-1 (GLT-1). Peroxisome proliferator-activated receptor-α (PPARα) can be activated by endogenous saturated fatty acids to regulate astrocytic lipid metabolism and functions. However, it is unclear if PPARα can exert the regulatory action on GLT-1 expression in astrocytes. This study showed that treatment with palmitic acid (PA) and the other two PPARα agonists (GW 7647 and WY 14,643) caused no change in the morphology of astrocytes, whereas membranous GLT-1 protein levels in astrocytes were significantly decreased by PA and PPARα agonists. Through lentivirus-mediated overexpression of GLT-1 tagged with red fluorescent protein (GLT-1-RFP), we also observed that GLT-1-RFP puncta in the processes of astrocytes were inhibited by the PPARα agonists. This reduction was prevented by the addition of the PPARα antagonist, GW6471. GLT-1-RFP was co-localized to the early endosome marker–EEA1 in astrocytes treated with the PPARα agonists. Moreover, PPARα-induced inhibition in membranous GLT-1 expression was abolished by the addition of dynamin inhibitor (dynasore). Furthermore, the co-treatment of astrocytes with PPARα agonists and dynasore, or with PPARα agonists and protein kinase C (PKC) inhibitor bis-indolylmaleimide 1 (BIS1), prevented the endocytosis of GLT-1-RFP. Based on the results, we conclude that the PPARα agonists increased GLT-1 endocytosis in astrocytes possibly through the PKC signaling pathway. In addition, our findings provide important information of PPARα involvement in the downregulation of astrocytic glutamate uptake via the promoted GLT-1 endocytosis.

Original languageEnglish
Pages (from-to)42-53
Number of pages12
JournalInternational Journal of Biochemistry and Cell Biology
Volume86
DOIs
Publication statusPublished - 2017 May 1

Fingerprint

Amino Acid Transport System X-AG
PPAR alpha
Peroxisome Proliferator-Activated Receptors
Endocytosis
Astrocytes
Ligands
Glutamic Acid
Palmitic Acid
Neurology
Protein Kinase C
Central Nervous System
Dynamins
Lentivirus
Protein C Inhibitor
Endosomes
Protein Kinase Inhibitors
Lipid Metabolism
Neuroglia
Synapses
Homeostasis

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Cell Biology

Cite this

@article{ba674991bdfc49fe87c694fe173baf01,
title = "Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes",
abstract = "Astrocytes, a stellate-shape glial population in the central nervous system (CNS), maintain glutamate homeostasis in adult CNS by undergoing glutamate uptake at the synapse through their glutamate transporter-1 (GLT-1). Peroxisome proliferator-activated receptor-α (PPARα) can be activated by endogenous saturated fatty acids to regulate astrocytic lipid metabolism and functions. However, it is unclear if PPARα can exert the regulatory action on GLT-1 expression in astrocytes. This study showed that treatment with palmitic acid (PA) and the other two PPARα agonists (GW 7647 and WY 14,643) caused no change in the morphology of astrocytes, whereas membranous GLT-1 protein levels in astrocytes were significantly decreased by PA and PPARα agonists. Through lentivirus-mediated overexpression of GLT-1 tagged with red fluorescent protein (GLT-1-RFP), we also observed that GLT-1-RFP puncta in the processes of astrocytes were inhibited by the PPARα agonists. This reduction was prevented by the addition of the PPARα antagonist, GW6471. GLT-1-RFP was co-localized to the early endosome marker–EEA1 in astrocytes treated with the PPARα agonists. Moreover, PPARα-induced inhibition in membranous GLT-1 expression was abolished by the addition of dynamin inhibitor (dynasore). Furthermore, the co-treatment of astrocytes with PPARα agonists and dynasore, or with PPARα agonists and protein kinase C (PKC) inhibitor bis-indolylmaleimide 1 (BIS1), prevented the endocytosis of GLT-1-RFP. Based on the results, we conclude that the PPARα agonists increased GLT-1 endocytosis in astrocytes possibly through the PKC signaling pathway. In addition, our findings provide important information of PPARα involvement in the downregulation of astrocytic glutamate uptake via the promoted GLT-1 endocytosis.",
author = "Huang, {Hui Ting} and Liao, {Chih Kai} and Wen-Tai Chiu and Shun-Fen Tzeng",
year = "2017",
month = "5",
day = "1",
doi = "10.1016/j.biocel.2017.03.008",
language = "English",
volume = "86",
pages = "42--53",
journal = "International Journal of Biochemistry and Cell Biology",
issn = "1357-2725",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes

AU - Huang, Hui Ting

AU - Liao, Chih Kai

AU - Chiu, Wen-Tai

AU - Tzeng, Shun-Fen

PY - 2017/5/1

Y1 - 2017/5/1

N2 - Astrocytes, a stellate-shape glial population in the central nervous system (CNS), maintain glutamate homeostasis in adult CNS by undergoing glutamate uptake at the synapse through their glutamate transporter-1 (GLT-1). Peroxisome proliferator-activated receptor-α (PPARα) can be activated by endogenous saturated fatty acids to regulate astrocytic lipid metabolism and functions. However, it is unclear if PPARα can exert the regulatory action on GLT-1 expression in astrocytes. This study showed that treatment with palmitic acid (PA) and the other two PPARα agonists (GW 7647 and WY 14,643) caused no change in the morphology of astrocytes, whereas membranous GLT-1 protein levels in astrocytes were significantly decreased by PA and PPARα agonists. Through lentivirus-mediated overexpression of GLT-1 tagged with red fluorescent protein (GLT-1-RFP), we also observed that GLT-1-RFP puncta in the processes of astrocytes were inhibited by the PPARα agonists. This reduction was prevented by the addition of the PPARα antagonist, GW6471. GLT-1-RFP was co-localized to the early endosome marker–EEA1 in astrocytes treated with the PPARα agonists. Moreover, PPARα-induced inhibition in membranous GLT-1 expression was abolished by the addition of dynamin inhibitor (dynasore). Furthermore, the co-treatment of astrocytes with PPARα agonists and dynasore, or with PPARα agonists and protein kinase C (PKC) inhibitor bis-indolylmaleimide 1 (BIS1), prevented the endocytosis of GLT-1-RFP. Based on the results, we conclude that the PPARα agonists increased GLT-1 endocytosis in astrocytes possibly through the PKC signaling pathway. In addition, our findings provide important information of PPARα involvement in the downregulation of astrocytic glutamate uptake via the promoted GLT-1 endocytosis.

AB - Astrocytes, a stellate-shape glial population in the central nervous system (CNS), maintain glutamate homeostasis in adult CNS by undergoing glutamate uptake at the synapse through their glutamate transporter-1 (GLT-1). Peroxisome proliferator-activated receptor-α (PPARα) can be activated by endogenous saturated fatty acids to regulate astrocytic lipid metabolism and functions. However, it is unclear if PPARα can exert the regulatory action on GLT-1 expression in astrocytes. This study showed that treatment with palmitic acid (PA) and the other two PPARα agonists (GW 7647 and WY 14,643) caused no change in the morphology of astrocytes, whereas membranous GLT-1 protein levels in astrocytes were significantly decreased by PA and PPARα agonists. Through lentivirus-mediated overexpression of GLT-1 tagged with red fluorescent protein (GLT-1-RFP), we also observed that GLT-1-RFP puncta in the processes of astrocytes were inhibited by the PPARα agonists. This reduction was prevented by the addition of the PPARα antagonist, GW6471. GLT-1-RFP was co-localized to the early endosome marker–EEA1 in astrocytes treated with the PPARα agonists. Moreover, PPARα-induced inhibition in membranous GLT-1 expression was abolished by the addition of dynamin inhibitor (dynasore). Furthermore, the co-treatment of astrocytes with PPARα agonists and dynasore, or with PPARα agonists and protein kinase C (PKC) inhibitor bis-indolylmaleimide 1 (BIS1), prevented the endocytosis of GLT-1-RFP. Based on the results, we conclude that the PPARα agonists increased GLT-1 endocytosis in astrocytes possibly through the PKC signaling pathway. In addition, our findings provide important information of PPARα involvement in the downregulation of astrocytic glutamate uptake via the promoted GLT-1 endocytosis.

UR - http://www.scopus.com/inward/record.url?scp=85015998148&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85015998148&partnerID=8YFLogxK

U2 - 10.1016/j.biocel.2017.03.008

DO - 10.1016/j.biocel.2017.03.008

M3 - Article

C2 - 28323206

AN - SCOPUS:85015998148

VL - 86

SP - 42

EP - 53

JO - International Journal of Biochemistry and Cell Biology

JF - International Journal of Biochemistry and Cell Biology

SN - 1357-2725

ER -