Limiting stress states in granular avalanches

Y. C. Tai, J. M.N.T. Gray

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

The Savage-Hunter theory for granular avalanches assumes that the granular material is in either of two limiting stress states, depending on whether the motion is convergent or divergent. At transitions between convergent and divergent regions, a jump in stress occurs, which necessarily implies that there is a jump in the avalanche velocity and/or its thickness. In this paper, a regularization scheme is used, which smoothly switches from one stress state to the other, and avoids the generation of such singular surfaces. The resulting algorithm is more stable than previous numerical methods but shocks can still occur during rapid convergence in the run-out zone. Results are presented from two-dimensional calculations on complex geometry which illustrate that some necking features observed in laboratory experiments can be explained by the regularized Savage-Hutter model.

Original languageEnglish
Pages (from-to)272-276
Number of pages5
JournalAnnals of Glaciology
Volume26
DOIs
Publication statusPublished - 1998

All Science Journal Classification (ASJC) codes

  • Earth-Surface Processes

Fingerprint Dive into the research topics of 'Limiting stress states in granular avalanches'. Together they form a unique fingerprint.

Cite this