Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter

Chia Chuan Liu, Sandeep Kar, Jiin Shuh Jean, Chung Ho Wang, Yao Chang Lee, Ondra Sracek, Zhaohui Li, Jochen Bundschuh, Huai Jen Yang, Chien Yen Chen

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

The present study deals with geochemical characterization of mud fluids and sediments collected from Kunshuiping (KSP), Liyushan (LYS), Wushanting (WST), Sinyangnyuhu (SYNH), Hsiaokunshui (HKS) and Yenshuikeng (YSK) mud volcanoes in southwestern Taiwan. Chemical constituents (cations, anions, trace elements, organic carbon, humic acid, and stable isotopes) in both fluids and mud were analyzed to investigate the geochemical processes and spatial variability among the mud volcanoes under consideration. Analytical results suggested that the anoxic mud volcanic fluids are highly saline, implying connate water as the probable source. The isotopic signature indicated that δ18O-rich fluids may be associated with silicate and carbonate mineral released through water-rock interaction, along with dehydration of clay minerals. Considerable amounts of arsenic in mud irrespective of fluid composition suggested possible release through biogeochemical processes in the subsurface environment. Sequential extraction of As from the mud indicated that As was mostly present in organic and sulphidic phases, and adsorbed on amorphous Mn oxyhydroxides. Volcanic mud and fluids are rich in organic matter (in terms of organic carbon), and the presence of humic acid in mud has implications for the binding of arsenic. Functional groups of humic acid also showed variable sources of organic matter among the mud volcanoes being examined. Because arsenate concentration in the mud fluids was found to be independent from geochemical factors, it was considered that organic matter may induce arsenic mobilization through an adsorption/desorption mechanism with humic substances under reducing conditions. Organic matter therefore plays a significant role in the mobility of arsenic in mud volcanoes.

Original languageEnglish
Pages (from-to)980-988
Number of pages9
JournalJournal of Hazardous Materials
Volume262
DOIs
Publication statusPublished - 2013 Nov 15

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint Dive into the research topics of 'Linking geochemical processes in mud volcanoes with arsenic mobilization driven by organic matter'. Together they form a unique fingerprint.

Cite this