LIRNet: A Lightweight Inception Residual Convolutional Network for Solar Panel Defect Classification

Shih Hsiung Lee, Ling Cheng Yan, Chu Sing Yang

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Solar-cell panels use sunlight as a source of energy to generate electricity. However, the performances of solar panels decline when they degrade, owing to defects. Some common defects in solar-cell panels include hot spots, cracking, and dust. Hence, it is important to efficiently detect defects in solar-cell panels and repair them. In this study, we propose a lightweight inception residual convolutional network (LIRNet) to detect defects in solar-cell panels. LIRNet is a neural network model that utilizes deep learning techniques. To achieve high model performance on solar panels, including high fault detection accuracy and processing speed, LIRNet draws on hierarchical learning, which is a two-phase solar-panel-defect classification method. The first phase is the data-preprocessing stage. We use the K-means clustering algorithm to refine the dataset. The second phase is the training of the model. We designed a powerful and lightweight neural network model to enhance accuracy and speed up the training time. In the experiment, LIRNet improved the accuracy by approximately 8% and performed ten times faster than EfficientNet.

Original languageEnglish
Article number2112
JournalEnergies
Volume16
Issue number5
DOIs
Publication statusPublished - 2023 Mar

All Science Journal Classification (ASJC) codes

  • Control and Optimization
  • Energy (miscellaneous)
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Fuel Technology
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'LIRNet: A Lightweight Inception Residual Convolutional Network for Solar Panel Defect Classification'. Together they form a unique fingerprint.

Cite this