Abstract
Li2FeSiO4 (LFS) nanorods, with a diameter of 80–100 nm and length of 0.8–1.0 μm, were synthesized successfully from a mixture of LiOH, FeSO4, and SiO2 nanoparticles via a simple hydrothermal process. The secondary structure with micro-sized bundles of nanorods was developed with high crystallinity under the hydrothermal condition of 180 °C for 72 h. Then, sucrose, as carbon source, was coated and carbonized on the surface of the LFS nanorods to fabricate LFS/C nanorod composite. The resulting LFS/C nanorod composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and surface area measurements. When used as the cathode materials for lithium-ion battery, the electrochemical performance of the LFS/C nanorod material delivers discharge capacities of 156 mAh g−1 in the voltage window of 1.8−4.7 V and also demonstrates good cycle stability when it is cycled between 1.8 and 4.1 V. In short, superior electrochemical properties could be caused by the short lithium-ion diffusion path of its nanorod structure.
Original language | English |
---|---|
Journal | Journal of Nanoparticle Research |
Volume | 17 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2015 Jan |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Chemistry(all)
- Atomic and Molecular Physics, and Optics
- Modelling and Simulation
- Materials Science(all)
- Condensed Matter Physics