TY - GEN
T1 - Load-based cell association for load balancing in heterogeneous cellular networks
AU - Chou, Guan Ting
AU - Liu, Kuang Hao Stanley
AU - Su, Szu Lin
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - To meet the explosive demands of wireless access, existing cellular networks are under a revolutionary change from macro-only homogeneous networks to heterogeneous cellular networks (HCNs) with small cells added into current infrastructure. Since small-cell base stations (SBSs) transmit with a much small power than the macro base stations (MBSs), the cell association scheme based on received signal strength will underuse SBSs and thus the notion of cell range expansion (CRE) has been proposed as a de facto technique for future HCNs. In CRE, a constant range expansion bias (REB) is added to the received signal strength of SBSs to increase the footprint of small cells and in turn offload the MBS onto the SBSs overlaid in the same geographical area. Without taking the cell load into consideration, cell offloading may not be effectively performed because an overloaded MBS needs to offload users more urgently than an underloaded MBS. In this work, we propose a load-based cell association scheme, where a bias adjustment function is introduced to determine the timing and the magnitude of offloading based on the load of individual MBS. Using 3GPP long term evolution advanced (LTE-A) compliant parameters, extensive simulation results are presented to show that the proposed load-based cell association scheme outperforms the existing one in terms of both average user rates and association successful probability.
AB - To meet the explosive demands of wireless access, existing cellular networks are under a revolutionary change from macro-only homogeneous networks to heterogeneous cellular networks (HCNs) with small cells added into current infrastructure. Since small-cell base stations (SBSs) transmit with a much small power than the macro base stations (MBSs), the cell association scheme based on received signal strength will underuse SBSs and thus the notion of cell range expansion (CRE) has been proposed as a de facto technique for future HCNs. In CRE, a constant range expansion bias (REB) is added to the received signal strength of SBSs to increase the footprint of small cells and in turn offload the MBS onto the SBSs overlaid in the same geographical area. Without taking the cell load into consideration, cell offloading may not be effectively performed because an overloaded MBS needs to offload users more urgently than an underloaded MBS. In this work, we propose a load-based cell association scheme, where a bias adjustment function is introduced to determine the timing and the magnitude of offloading based on the load of individual MBS. Using 3GPP long term evolution advanced (LTE-A) compliant parameters, extensive simulation results are presented to show that the proposed load-based cell association scheme outperforms the existing one in terms of both average user rates and association successful probability.
UR - http://www.scopus.com/inward/record.url?scp=84958034825&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84958034825&partnerID=8YFLogxK
U2 - 10.1109/PIMRC.2015.7343569
DO - 10.1109/PIMRC.2015.7343569
M3 - Conference contribution
AN - SCOPUS:84958034825
T3 - IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC
SP - 1681
EP - 1686
BT - 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 26th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, PIMRC 2015
Y2 - 30 August 2015 through 2 September 2015
ER -