Local recovery of a piecewise constant anisotropic conductivity in EIT on domains with exposed corners

Maarten V. de Hoop, Takashi Furuya, Ching Lung Lin, Gen Nakamura, Manmohan Vashisth

Research output: Contribution to journalArticlepeer-review


We study the local recovery of an unknown piecewise constant anisotropic conductivity in electric impedance tomography on certain bounded Lipschitz domains Ω in R 2 with corners. The measurement is conducted on a connected open subset of the boundary ∂ Ω of Ω containing corners and is given as a localized Neumann-to-Dirichlet map. The above unknown conductivity is defined via a decomposition of Ω into polygonal cells. Specifically, we consider a parallelogram-based decomposition and a trapezoid-based decomposition. We assume that the decomposition is known, but the conductivity on each cell is unknown. We prove that the local recovery is almost surely true near a known piecewise constant anisotropic conductivity γ 0. We do so by proving that the injectivity of the Fréchet derivative F ′ ( γ 0 ) of the forward map F, say, at γ 0 is almost surely true. The proof presented, here, involves defining different classes of decompositions for γ 0 and a perturbation or contrast H in a proper way so that we can find in the interior of a cell for γ 0 exposed single or double corners of a cell of suppH for the former decomposition and latter decomposition, respectively. Then, by adapting the usual proof near such corners, we establish the aforementioned injectivity.

Original languageEnglish
Article number025005
JournalInverse Problems
Issue number2
Publication statusPublished - 2023 Feb

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Signal Processing
  • Mathematical Physics
  • Computer Science Applications
  • Applied Mathematics


Dive into the research topics of 'Local recovery of a piecewise constant anisotropic conductivity in EIT on domains with exposed corners'. Together they form a unique fingerprint.

Cite this