Long short-term memory approach to estimate battery remaining useful life using partial data

Benvolence Chinomona, Chunhui Chung, Lien-Kai Chang, Wei Chih Su, Mi Ching Tsai

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Due to the increasing demand of electrical vehicles (EVs), prognostics of the battery state is of paramount importance. The nonlinearity of the signal (e.g. voltage) results in the complexity of analyzing the degradation of the battery. Aging characteristics extracted from the voltage, current, and temperature when the battery is fully charged/discharged were commonly used by previous researchers to determine the battery state. The drawbacks of the previous prediction algorithms are insufficient or irrelevant features to explicitly model the battery aging and the use of fully charged/discharged datasets, which might result in poor prediction accuracy. Therefore, this study proposes a feature selection technique to adequately select optimum statistical feature subset and the use of partial charge/discharge data to determine the battery remaining useful life (RUL) using Recurrent Neural Network- Long Short-Term Memory (RNN-LSTM). The proposed approach demonstrated exceptional RUL prediction results, with the root mean square error (RMSE) of 0.00286 and mean average error (MAE) of 0.00222 using partial discharge data. The proposed method shows prediction improvement in comparison with the use of full data and state-of-the-art outcomes from previous studies of the same open data from the National Aeronautics and Space Administration (NASA) prognostic battery data sets.

Original languageEnglish
Pages (from-to)165419-165431
Number of pages13
JournalIEEE Access
Volume8
DOIs
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Materials Science(all)
  • Engineering(all)

Fingerprint Dive into the research topics of 'Long short-term memory approach to estimate battery remaining useful life using partial data'. Together they form a unique fingerprint.

Cite this