Loose-hinge total elbow arthroplasty: An experimental study of the effects of implant alignment on three-dimensional elbow kinematics

Frédéric Schuind, S. O'Driscoll, S. Korinek, K. N. An, B. F. Morrey

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

A previous study suggested that the kinematics of a loose-hinge total elbow arthroplasty (TEA) are those of a truly semiconstrained joint. This study addresses the effects of malposition of the implant. The three-dimensional elbow kinematics during simulated active motion were studiedin six cadaver specimens using an electromagnetic tracking device. In addition to simulated active elbow flexion, flexion arcs were obtained under an elbow varus or valgus moment, to calculate the structural varus-valgus laxities. The results after four different Coonrad-Morrey TEA positions of implantation were compared with those of the intact elbow. The flexion-extension amplitudes were not significantly decreased after TEA implantation, except with external rotation of the ulnar component, which resulted in a loss of extension. In the intact elbow and after TEA implantation in any position, the mean varus-valgus deviations throughout elbow flexion were in a narrower range than the structural limits imposed by the ligaments (intant elbow) or the TEA binge design. With internal malrotation of the humeral component over 10°, however, the valgus structural limit was reached and, conversely, the varus limit with external rotation over 10°. The clinical improvement observed with the semiconstrained TEA is derived from the benefits of the less constrained articulation. The proximodistal changes of TEA implantation have no consequence on the kinematic pattern. Rotational malpositioning of either humeral or ulnar component should be avoided, the first because it changes the kinematic pattern toward the structural limits of the implant and, therefore, may lead to excessive stresses at the bone-cement implant interfaces and to early loosening, and the latter becuase it causes loss of extension.

Original languageEnglish
Pages (from-to)670-678
Number of pages9
JournalJournal of Arthroplasty
Volume10
Issue number5
DOIs
Publication statusPublished - 1995

All Science Journal Classification (ASJC) codes

  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Loose-hinge total elbow arthroplasty: An experimental study of the effects of implant alignment on three-dimensional elbow kinematics'. Together they form a unique fingerprint.

Cite this