Loss of the seipin gene perturbs eggshell formation in Caenorhabditis elegans

Xiaofei Bai, Leng Jie Huang, Sheng Wen Chen, Benjamin Nebenfuehr, Brian Wysolmerski, Jui Ching Wu, Sara K. Olson, Andy Golden, Chao Wen Wang

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Seipin, an evolutionary conserved protein, plays pivotal roles during lipid droplet (LD) biogenesis and is associated with various human diseases with unclear mechanisms. Here, we analyzed Caenorhabditis elegans mutants deleted of the sole SEIPIN gene, seip-1. Homozygous seip-1 mutants displayed penetrant embryonic lethality, which is caused by the disruption of the lipid-rich permeability barrier, the innermost layer of the C. elegans embryonic eggshell. In C. elegans oocytes and embryos, SEIP-1 is associated with LDs and is crucial for controlling LD size and lipid homeostasis. The seip-1 deletion mutants reduced the ratio of polyunsaturated fatty acids (PUFAs) in their embryonic fatty acid pool. Interestingly, dietary supplementation of selected n-6 PUFAs rescued the embryonic lethality and defective permeability barrier. Accordingly, we propose that SEIP-1 may maternally regulate LD biogenesis and lipid homeostasis to orchestrate the formation of the permeability barrier for eggshell synthesis during embryogenesis. A lipodystrophy allele of seip-1 resulted in embryonic lethality as well and could be rescued by PUFA supplementation. These experiments support a great potential for using C. elegans to model SEIPIN-associated human diseases.

Original languageEnglish
Article numberdev192997
JournalDevelopment (Cambridge)
Issue number20
Publication statusPublished - 2021 Oct

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Developmental Biology


Dive into the research topics of 'Loss of the seipin gene perturbs eggshell formation in Caenorhabditis elegans'. Together they form a unique fingerprint.

Cite this