Low-energy Landau levels of Bernal zigzag graphene ribbons

Y. C. Huang, C. P. Chang, W. S. Su, M. F. Lin

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Low-energy Landau levels of Bernal zigzag graphene ribbons in the presence of a uniform perpendicular magnetic field (B) are investigated by the Peierls coupling tight-binding model. State energies and associated wave functions are dominated by the B -field strength and the kz -dependent inter-ribbon interactions. The occupied valence bands are asymmetric to the unoccupied conduction bands about the Fermi level. Many doubly degenerate Landau levels and singlet curving magnetobands exist along the kx and kz directions, respectively. The kz -dependent inter-ribbon interactions dramatically modify the magnetobands, such as the lift of double degeneracy, the change in state energies, and the production of two groups of curving magnetobands. They also change the characteristics of the wave functions and cause the redistribution of the charge-carrier density. The kz -dependent wave functions are further used to predict the selection rule of the optical transition.

Original languageEnglish
Article number013711
JournalJournal of Applied Physics
Volume106
Issue number1
DOIs
Publication statusPublished - 2009

All Science Journal Classification (ASJC) codes

  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Low-energy Landau levels of Bernal zigzag graphene ribbons'. Together they form a unique fingerprint.

Cite this