Abstract
In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH3NH3PbI3 perovskite. We observed that the Pb(SCN)2 film transformed to PbI2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN)2 is only 4 % of PbI2. These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells.
Original language | English |
---|---|
Pages (from-to) | 2620-2627 |
Number of pages | 8 |
Journal | ChemSusChem |
Volume | 9 |
Issue number | 18 |
DOIs | |
Publication status | Published - 2016 Sept 22 |
All Science Journal Classification (ASJC) codes
- Environmental Chemistry
- General Chemical Engineering
- General Materials Science
- General Energy