Abstract
This letter presents energy-efficient MgO based magnetic tunnel junction (MTJ) bits for high-speed spin transfer torque magnetoresistive random access memory (STT-MRAM). We present experimental data illustrating the effect of device shape, area, and tunnel-barrier thickness of the MTJ on its switching voltage, thermal stability, and energy per write operation in the nanosecond switching regime. Finite-temperature micromagnetic simulations show that the write energy changes with operating temperature. The temperature sensitivity increases with increasing write pulsewidth and decreasing write voltage. We demonstrate STT-MRAM cells with switching energies of < 1 pJ for write times of 15 ns.
Original language | English |
---|---|
Article number | 5623296 |
Pages (from-to) | 57-59 |
Number of pages | 3 |
Journal | IEEE Electron Device Letters |
Volume | 32 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2011 Jan |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Electrical and Electronic Engineering