Machine tool setting for the manufacturing of spherical cams

Eing Jer Wei, Hsin Yi Lai, Cha'o Kuang Chen

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This paper employs the theory of conjugate surfaces and the notion of Denavit-Hartenberg (D-H) transformation to investigate the manufacturing requirements for generating the CNC machine setting for spherical cams. The general design model is first derived and presented to determine the equations for a spherical cam and to generate the associated NC data for a five-axis CNC machine system to produce the spherical cam-oscillating roller-follower system (SCORF) mechanism. A D-H transformation is employed to derive the ability-function matrix of the machine tool and to determine the desired cutter motion trajectory. The NC program data equation is obtained by equating the ability function of the production machine and the path planning matrices. The method presented here is general and systematic. It combines the functions of design and manufacture for general cam production. The resultant cutting velocity and material removal rate are also studied to allow the efficiency of the manufacturing process by properly controlled. A SCORF is employed to illustrate the effectiveness of the proposed approach. The direct measurement data for the final product indicates that the result is satisfactory. This result, in turns, indicates that the proposed theory and the systematic modeling procedure presented in this paper are both valid and effective.

Original languageEnglish
Pages (from-to)147-155
Number of pages9
JournalJournal of Materials Processing Technology
Volume100
Issue number1
DOIs
Publication statusPublished - 2000 Apr 3

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Computer Science Applications
  • Metals and Alloys
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Machine tool setting for the manufacturing of spherical cams'. Together they form a unique fingerprint.

  • Cite this