Magnetic Resonance Elastography in the Assessment of Acute Effects of Kinesio Taping on Lumbar Paraspinal Muscles

Chien-Kuo Wang, Yu-Hua Dean Fang, Liang Ching Lin, Cheng-Feng Lin, Li-Chieh Kuo, Feng Mao Chiu, Chia Hui Chen

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Background: Kinesio tape (KT) is an elastic therapeutic tape used for treating sports-related injuries and a number of other disorders. To date, the objective evidence to link pathophysiological effects and actual reactions triggered by KT is limited. Purpose: To explore the effect of KT on the lumbar paraspinal muscles by magnetic resonance (MR) elastography. Study Type: Prospective observational study. Population: Sixty-six asymptomatic volunteers with 31 women and 35 men. Field Strength/Sequence: 3.0T MRI and elastography with vibration frequency of 120 Hz. Assessment: The 5-cm-width KT with full tension was placed on a single side of the lumbar paraspinal muscle. The taping side and adhering direction were randomly decided. Two rectangular regions of interest (ROIs) of 5- and 2.5-cm-width were positioned at the bilateral paraspinal regions from the L2 to L4 level on the confidence map of MR elastography before and after KT taping. The mean shear stiffness values of the ROIs at the superficial, middle, and deep depths were recorded; then the differences between the taping and reference sides were calculated. Statistical Tests: Paired t-test and Pearson correlations were used to evaluate the stiffness changes after KT application and intraoperator errors of the stiffness measures on the reference side, respectively. Results: A significant decrease in the muscle stiffness value between taping and reference sides (–0.71 kPa ± 0.60 with KT and –0.25 kPa ± 0.78 without KT, P < 0.0001 for 5-cm ROI; –0.67 kPa ± 1.12 with KT and –0.16 kPa ± 1.17 without KT, P = 0.0004 for 2.5-cm ROI) was found in the superficial depth, but no significant differences in the middle and deep depths (P = 0.25 and P = 0.79 for 5-cm ROI; P = 0.09 and P = 0.67 for 2.5-cm ROI, respectively). There were no significant differences of muscle stiffness differences between gender (P = 0.11 for superficial, P = 0.37 for middle, P = 0.78 for deep) and taping direction (P = 0.18 for superficial, P = 0.13 for middle, P = 0.15 for deep). Data Conclusion: Our results demonstrate that KT can reduce the MR elastography-derived shear stiffness in the superficial depth of paraspinal muscles. Level of Evidence: 2. Technical Efficacy: Stage 2. J. Magn. Reson. Imaging 2019;49:1039–1045.

Original languageEnglish
Pages (from-to)1039-1045
Number of pages7
JournalJournal of Magnetic Resonance Imaging
Volume49
Issue number4
DOIs
Publication statusPublished - 2019 Apr

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Magnetic Resonance Elastography in the Assessment of Acute Effects of Kinesio Taping on Lumbar Paraspinal Muscles'. Together they form a unique fingerprint.

Cite this