Magnetic skyrmions for unconventional computing

Sai Li, Wang Kang, Xichao Zhang, Tianxiao Nie, Yan Zhou, Kang L. Wang, Weisheng Zhao

Research output: Contribution to journalReview articlepeer-review

13 Citations (Scopus)

Abstract

Improvements in computing performance have significantly slowed down over the past few years owing to the intrinsic limitations of computing hardware. However, the demand for data computing has increased exponentially. To solve this problem, tremendous attention has been focused on the continuous scaling of Moore's law as well as the advanced non-von Neumann computing architecture. A rich variety of unconventional computing paradigms has been devised with the rapid development of nanoscale devices. Magnetic skyrmions, spin swirling quasiparticles, have been endowed with great expectations for unconventional computing due to their potential as the smallest information carriers by exploiting their physics and dynamics. In this paper, we provide an overview of the recent progress of skyrmion-based unconventional computing from a joint device-application perspective. This paper aims to build up a panoramic picture, analyze the remaining challenges, and most importantly to shed light on the outlook of skyrmion based unconventional computing for interdisciplinary researchers.

Original languageEnglish
Pages (from-to)854-868
Number of pages15
JournalMaterials Horizons
Volume8
Issue number3
DOIs
Publication statusPublished - 2021 Mar

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Process Chemistry and Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Magnetic skyrmions for unconventional computing'. Together they form a unique fingerprint.

Cite this