Manipulating surface states in topological insulator nanoribbons

Faxian Xiu, Liang He, Yong Wang, Lina Cheng, Li Te Chang, Murong Lang, Guan Huang, Xufeng Kou, Yi Zhou, Xiaowei Jiang, Zhigang Chen, Jin Zou, Alexandros Shailos, Kang L. Wang

Research output: Contribution to journalArticlepeer-review

332 Citations (Scopus)

Abstract

Topological insulators display unique properties, such as the quantum spin Hall effect, because time-reversal symmetry allows charges and spins to propagate along the edge or surface of the topological insulator without scattering. However, the direct manipulation of these edge/surface states is difficult because they are significantly outnumbered by bulk carriers. Here, we report experimental evidence for the modulation of these surface states by using a gate voltage to control quantum oscillations in Bi2 Te3 nanoribbons. Surface conduction can be significantly enhanced by the gate voltage, with the mobility and Fermi velocity reaching values as high as ∼5,800 cm2 V-1 s -1 and ∼3.7×105 m s-1, respectively, with up to ∼51% of the total conductance being due to the surface states. We also report the first observation of h/2e periodic oscillations, suggesting the presence of time-reversed paths with the same relative zero phase at the interference point. The high surface conduction and ability to manipulate the surface states demonstrated here could lead to new applications in nanoelectronics and spintronics.

Original languageEnglish
Pages (from-to)216-221
Number of pages6
JournalNature Nanotechnology
Volume6
Issue number4
DOIs
Publication statusPublished - 2011 Apr

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Biomedical Engineering
  • Materials Science(all)
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Manipulating surface states in topological insulator nanoribbons'. Together they form a unique fingerprint.

Cite this