TY - GEN
T1 - Manipulation of bioparticles on electrodeless dielectrophoretic chip based on AC electrokinetic control
AU - Chang, Hsien
AU - Chen, Chao Hung
AU - Cheng, I. Fang
AU - Lin, Chi Chang
PY - 2007/8/28
Y1 - 2007/8/28
N2 - An electrodeless dielectrophoretic (EDEP) chip was designed and applied to separate the micro-particles in different sizes, and the ability of bio-separation of real samples also be examined. The dielectrophoretic (DEP) force can be principally created and controlled by provide a non-uniform electric field that is geometrically constricted by the insulator-patterned chip in combination with an alternative current (AC) electric field at frequency 10 kHz and 500 Vp-p set on the two sides of channel inlet. The EDEP chip was used to separate the E. coli and red blood cells (RBC), which from human whole blood sample, via well control of DEP force. Our results showed the bacteria and RBC can be separated into the higher and lower electric field regions of the EDEP chip in few seconds, respectively. A rapid, useful diagnosis tool, based on the EDEP method could be applied and used in the various fields of the bio-industry technology, the detection and the identification of clinical infections.
AB - An electrodeless dielectrophoretic (EDEP) chip was designed and applied to separate the micro-particles in different sizes, and the ability of bio-separation of real samples also be examined. The dielectrophoretic (DEP) force can be principally created and controlled by provide a non-uniform electric field that is geometrically constricted by the insulator-patterned chip in combination with an alternative current (AC) electric field at frequency 10 kHz and 500 Vp-p set on the two sides of channel inlet. The EDEP chip was used to separate the E. coli and red blood cells (RBC), which from human whole blood sample, via well control of DEP force. Our results showed the bacteria and RBC can be separated into the higher and lower electric field regions of the EDEP chip in few seconds, respectively. A rapid, useful diagnosis tool, based on the EDEP method could be applied and used in the various fields of the bio-industry technology, the detection and the identification of clinical infections.
UR - http://www.scopus.com/inward/record.url?scp=34548137643&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548137643&partnerID=8YFLogxK
U2 - 10.1109/NEMS.2007.352228
DO - 10.1109/NEMS.2007.352228
M3 - Conference contribution
AN - SCOPUS:34548137643
SN - 1424406102
SN - 9781424406104
T3 - Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007
SP - 1175
EP - 1178
BT - Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007
T2 - 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007
Y2 - 16 January 2007 through 19 January 2007
ER -