Abstract
An invisibility cloak based on transformation optics often requires material with inhomogeneous, anisotropic, and possibly extreme material parameters. In the present study, on the basis of the concept of neutral inclusion, we find that a spherical cloak can be achieved using a layer with finite constant anisotropic conductivity. We show that thermal localization can be tuned and controlled by anisotropy of the coating layer. A suitable balance of the degree of anisotropy of the cloaking layer and the layer thickness provides a cloaking effect. Additionally, by reversing the conductivities in two different directions, we find that a thermal concentrating effect can be simulated. This finding is of particular value in practical implementation as a material with constant material parameters is more feasible to fabricate. In addition to the theoretical analysis, we also demonstrate our solutions in numerical simulations based on finite element calculations to validate our results.
Original language | English |
---|---|
Article number | 054904 |
Journal | Journal of Applied Physics |
Volume | 117 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2015 Feb 7 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy(all)