Matrix-based paraxial skew ray-tracing in 3D systems with non-coplanar optical axis

Psang Dain Lin, Chi Kuen Sung

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Matrix-based Gaussian paraxial ray-tracing is commonly used for first estimates in early design stages of optical systems. However, the usual techniques are suitable only for rays in systems with a common straight-line optical axis, and cannot be used in systems containing mirrors and/or prisms. Attard extended these methods to matrix-based skew ray-tracing for systems containing cylindrical lenses with orthogonal cylinder axes and spherical lenses with combinations of cylindrical lenses, but had problems with non-straight and non-coplanar optical relations. This paper develops a novel general matrix method for paraxial skew ray-tracing in systems with non-coplanar optical axes containing spherical and flat boundary surfaces. First-order Taylor series expansion is used to approximate skew ray-tracing equations in simple repetitive linear matrix form. Sufficiently good accuracy is obtained if the proposed method is restricted to skew rays in the immediate neighborhood of the optical axis, as demonstrated by numerical examples. This study extends earlier Matrix-based paraxial ray-tracing design technique to include non-coplanar systems containing mirrors and/or reflecting prisms such as projectors, with special application potential for first estimates in early design stages of 3D optical systems.

Original languageEnglish
Pages (from-to)329-340
Number of pages12
Issue number7
Publication statusPublished - 2006 Jul 3

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Matrix-based paraxial skew ray-tracing in 3D systems with non-coplanar optical axis'. Together they form a unique fingerprint.

Cite this