Maximum power limiting with average current mode control for photovoltaic system

Ray-Lee Lin, Li Wei Yen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a novel maximum power limiting (MPL) technology for the photovoltaic system. Most conventional MPPT technologies in the photovoltaic system are implemented with digital control circuit, which causes the cost-consuming issue. Therefore, the proposed MPL photovoltaic system can be implemented with analog control circuit, which is substituted for the digital control circuit. By associating the output characteristics of solar cell module, the proposed MPL control technology adjusts the photovoltaic current and power with average current-mode control (ACMC) scheme. Especially, this proposed MPL control scheme with the ACMC can be simply and cost-effectively implemented with the present power-factor-correction (PFC) control ICs available on the market. Furthermore, with considering the temperature effect on the electronic characteristics of the solar cell module, the temperature compensation circuit is associated with the MPL circuit to ensure the claimed function even at different temperature conditions. Finally, the prototype circuit of the 85W photovoltaic system with the proposed MPL control scheme is built in order to validate the claimed MPL function.

Original languageEnglish
Title of host publication2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Proceedings
Pages611-617
Number of pages7
DOIs
Publication statusPublished - 2010 Dec 20
Event2010 2nd IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Atlanta, GA, United States
Duration: 2010 Sept 122010 Sept 16

Publication series

Name2010 IEEE Energy Conversion Congress and Exposition, ECCE 2010 - Proceedings

Other

Other2010 2nd IEEE Energy Conversion Congress and Exposition, ECCE 2010
Country/TerritoryUnited States
CityAtlanta, GA
Period10-09-1210-09-16

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Maximum power limiting with average current mode control for photovoltaic system'. Together they form a unique fingerprint.

Cite this