Abstract
Powered exoskeletons can provide motion enhancement for both healthy and physically challenged people. Upper limb exoskeletons are required to have multiple degrees-of-freedom and can still produce sufficient force to augment the upper limb motion. The design using serial mechanisms usually results in a complicated and bulky exoskeleton that prevents itself from being wearable. This paper presents a new exoskeleton design aimed to achieve compactness and wearability. We consider a shoulder exoskeleton that consists of a parallel spherical mechanism with two slider crank mechanisms. The actuators can be placed on a stationary platform and attached closely to human body. Thus a better inertia property can be obtained while maintaining lightweight. Through the use of a gravity-balancing mechanism, the required actuator power becomes smaller and with better efficiency. A static model is developed to analyze and optimize the exoskeleton. Through illustrations of a prototype, the exoskeleton is shown to be wearable and can provide adequate motion enhancement of a human's upper limb.
Original language | English |
---|---|
Article number | 7139893 |
Pages (from-to) | 4992-4997 |
Number of pages | 6 |
Journal | Proceedings - IEEE International Conference on Robotics and Automation |
Volume | 2015-June |
Issue number | June |
DOIs | |
Publication status | Published - 2015 Jun 29 |
Event | 2015 IEEE International Conference on Robotics and Automation, ICRA 2015 - Seattle, United States Duration: 2015 May 26 → 2015 May 30 |
All Science Journal Classification (ASJC) codes
- Software
- Control and Systems Engineering
- Artificial Intelligence
- Electrical and Electronic Engineering