Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway

Research output: Contribution to journalArticle

57 Citations (Scopus)

Abstract

Metformin has been used as first-line treatment in patients with type 2 diabetes, and is reported to reduce cancer risk and progression by activating the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Cisplatin remains the main drug for treating advanced non-small-cell lung cancer. However, drug resistance often develops through several mechanisms during the treatment course, including one mechanism mediated by the activation of the IL-6/ signal transducer and activator of transcription (STAT)-3 pathway, related to the generation of reactive oxygen species (ROS). This study demonstrated a correlation between STAT3 phosphorylation and cisplatin cytotoxicity, using AS2 (PC14PE6/AS2)-derived cell lines (AS2/S3C) that contained constitutively active STAT3 plasmids as a model. A STAT3 inhibitor (JSI-124) enhanced the cisplatin sensitivity in AS2 cells, whereas metformin inhibited STAT3 phosphorylation and enhanced cisplatin cytotoxicity. By contrast, another AMPK activator (5-aminoimidazole-4-carboxamide-riboside) failed to produce these effects. LKB1-AMPK silencing by small, interfering RNA or mammalian target of rapamycin (mTOR) inhibition by rapamycin or pp242 did not alter the effect of metformin on STAT3 activity suppression, suggesting that metformin can modulate the STAT3pathway through anLKB1-AMPK-independent and probably mTOR-independent mechanism. Metformin also inhibited cisplatininduced ROS production and autocrine IL-6 secretion in AS2 cells. Both mechanisms contributed to the ability of metformin to suppress STAT3 activation in cancer cells, which resulted in the decreased secretion of vascular endothelial growth factor by cancer cells. The growth of subcutaneous tumor xenografts was significantly delayed by a combination of cisplatin and metformin. This is the first study to demonstrate that metformin suppresses STAT3 activation via LKB1-AMPK-mTOR-independent but ROS-related and autocrine IL-6 production-related pathways. Thus, metformin helps to overcome tumor drug resistance by targeting STAT3.

Original languageEnglish
Pages (from-to)241-250
Number of pages10
JournalAmerican Journal of Respiratory Cell and Molecular Biology
Volume49
Issue number2
DOIs
Publication statusPublished - 2013 Aug 1

Fingerprint

STAT3 Transcription Factor
AMP-Activated Protein Kinases
Metformin
Cytotoxicity
Liver
Cisplatin
Phosphotransferases
Sirolimus
Cells
Interleukin-6
Reactive Oxygen Species
Phosphorylation
Chemical activation
Neoplasms
Drug Resistance
Tumors
Pharmaceutical Preparations
AMP-activated protein kinase kinase
Drug Delivery Systems
Medical problems

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Pulmonary and Respiratory Medicine
  • Clinical Biochemistry
  • Cell Biology

Cite this

@article{46f0c51834f24217a08602e336527409,
title = "Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway",
abstract = "Metformin has been used as first-line treatment in patients with type 2 diabetes, and is reported to reduce cancer risk and progression by activating the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Cisplatin remains the main drug for treating advanced non-small-cell lung cancer. However, drug resistance often develops through several mechanisms during the treatment course, including one mechanism mediated by the activation of the IL-6/ signal transducer and activator of transcription (STAT)-3 pathway, related to the generation of reactive oxygen species (ROS). This study demonstrated a correlation between STAT3 phosphorylation and cisplatin cytotoxicity, using AS2 (PC14PE6/AS2)-derived cell lines (AS2/S3C) that contained constitutively active STAT3 plasmids as a model. A STAT3 inhibitor (JSI-124) enhanced the cisplatin sensitivity in AS2 cells, whereas metformin inhibited STAT3 phosphorylation and enhanced cisplatin cytotoxicity. By contrast, another AMPK activator (5-aminoimidazole-4-carboxamide-riboside) failed to produce these effects. LKB1-AMPK silencing by small, interfering RNA or mammalian target of rapamycin (mTOR) inhibition by rapamycin or pp242 did not alter the effect of metformin on STAT3 activity suppression, suggesting that metformin can modulate the STAT3pathway through anLKB1-AMPK-independent and probably mTOR-independent mechanism. Metformin also inhibited cisplatininduced ROS production and autocrine IL-6 secretion in AS2 cells. Both mechanisms contributed to the ability of metformin to suppress STAT3 activation in cancer cells, which resulted in the decreased secretion of vascular endothelial growth factor by cancer cells. The growth of subcutaneous tumor xenografts was significantly delayed by a combination of cisplatin and metformin. This is the first study to demonstrate that metformin suppresses STAT3 activation via LKB1-AMPK-mTOR-independent but ROS-related and autocrine IL-6 production-related pathways. Thus, metformin helps to overcome tumor drug resistance by targeting STAT3.",
author = "Lin, {Chien Chung} and Yeh, {Hsuan Heng} and Huang, {Wei Lun} and Yan, {Jing Jou} and Lai, {Wu Wei} and Su, {Wen Pin} and Chen, {Helen H.W.} and Su, {Wu Chou}",
year = "2013",
month = "8",
day = "1",
doi = "10.1165/rcmb.2012-0244OC",
language = "English",
volume = "49",
pages = "241--250",
journal = "American Journal of Respiratory Cell and Molecular Biology",
issn = "1044-1549",
publisher = "American Thoracic Society",
number = "2",

}

TY - JOUR

T1 - Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway

AU - Lin, Chien Chung

AU - Yeh, Hsuan Heng

AU - Huang, Wei Lun

AU - Yan, Jing Jou

AU - Lai, Wu Wei

AU - Su, Wen Pin

AU - Chen, Helen H.W.

AU - Su, Wu Chou

PY - 2013/8/1

Y1 - 2013/8/1

N2 - Metformin has been used as first-line treatment in patients with type 2 diabetes, and is reported to reduce cancer risk and progression by activating the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Cisplatin remains the main drug for treating advanced non-small-cell lung cancer. However, drug resistance often develops through several mechanisms during the treatment course, including one mechanism mediated by the activation of the IL-6/ signal transducer and activator of transcription (STAT)-3 pathway, related to the generation of reactive oxygen species (ROS). This study demonstrated a correlation between STAT3 phosphorylation and cisplatin cytotoxicity, using AS2 (PC14PE6/AS2)-derived cell lines (AS2/S3C) that contained constitutively active STAT3 plasmids as a model. A STAT3 inhibitor (JSI-124) enhanced the cisplatin sensitivity in AS2 cells, whereas metformin inhibited STAT3 phosphorylation and enhanced cisplatin cytotoxicity. By contrast, another AMPK activator (5-aminoimidazole-4-carboxamide-riboside) failed to produce these effects. LKB1-AMPK silencing by small, interfering RNA or mammalian target of rapamycin (mTOR) inhibition by rapamycin or pp242 did not alter the effect of metformin on STAT3 activity suppression, suggesting that metformin can modulate the STAT3pathway through anLKB1-AMPK-independent and probably mTOR-independent mechanism. Metformin also inhibited cisplatininduced ROS production and autocrine IL-6 secretion in AS2 cells. Both mechanisms contributed to the ability of metformin to suppress STAT3 activation in cancer cells, which resulted in the decreased secretion of vascular endothelial growth factor by cancer cells. The growth of subcutaneous tumor xenografts was significantly delayed by a combination of cisplatin and metformin. This is the first study to demonstrate that metformin suppresses STAT3 activation via LKB1-AMPK-mTOR-independent but ROS-related and autocrine IL-6 production-related pathways. Thus, metformin helps to overcome tumor drug resistance by targeting STAT3.

AB - Metformin has been used as first-line treatment in patients with type 2 diabetes, and is reported to reduce cancer risk and progression by activating the liver kinase B1 (LKB1)-AMP-activated protein kinase (AMPK) pathway. Cisplatin remains the main drug for treating advanced non-small-cell lung cancer. However, drug resistance often develops through several mechanisms during the treatment course, including one mechanism mediated by the activation of the IL-6/ signal transducer and activator of transcription (STAT)-3 pathway, related to the generation of reactive oxygen species (ROS). This study demonstrated a correlation between STAT3 phosphorylation and cisplatin cytotoxicity, using AS2 (PC14PE6/AS2)-derived cell lines (AS2/S3C) that contained constitutively active STAT3 plasmids as a model. A STAT3 inhibitor (JSI-124) enhanced the cisplatin sensitivity in AS2 cells, whereas metformin inhibited STAT3 phosphorylation and enhanced cisplatin cytotoxicity. By contrast, another AMPK activator (5-aminoimidazole-4-carboxamide-riboside) failed to produce these effects. LKB1-AMPK silencing by small, interfering RNA or mammalian target of rapamycin (mTOR) inhibition by rapamycin or pp242 did not alter the effect of metformin on STAT3 activity suppression, suggesting that metformin can modulate the STAT3pathway through anLKB1-AMPK-independent and probably mTOR-independent mechanism. Metformin also inhibited cisplatininduced ROS production and autocrine IL-6 secretion in AS2 cells. Both mechanisms contributed to the ability of metformin to suppress STAT3 activation in cancer cells, which resulted in the decreased secretion of vascular endothelial growth factor by cancer cells. The growth of subcutaneous tumor xenografts was significantly delayed by a combination of cisplatin and metformin. This is the first study to demonstrate that metformin suppresses STAT3 activation via LKB1-AMPK-mTOR-independent but ROS-related and autocrine IL-6 production-related pathways. Thus, metformin helps to overcome tumor drug resistance by targeting STAT3.

UR - http://www.scopus.com/inward/record.url?scp=84883168731&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84883168731&partnerID=8YFLogxK

U2 - 10.1165/rcmb.2012-0244OC

DO - 10.1165/rcmb.2012-0244OC

M3 - Article

C2 - 23526220

AN - SCOPUS:84883168731

VL - 49

SP - 241

EP - 250

JO - American Journal of Respiratory Cell and Molecular Biology

JF - American Journal of Respiratory Cell and Molecular Biology

SN - 1044-1549

IS - 2

ER -