Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor

Wei Hsin Chen, Yu Zhi Guo, Chih Chun Chen

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Hydrogen production with high efficiency is a crucial issue for prospective hydrogen economy and carbon emission reduction. Methanol partial oxidation triggered over an h-BN-Pt/Al2O3 catalyst from a cold start in a Swiss-roll reactor with heat recirculation are investigated experimentally. The effects of methanol flow rate (0.5 and 0.6 mL min−1), O2 concentration (21–35 vol%), and O2-to-methanol (O2/M) molar ratio (1.0–3.0) on the performance of methanol partial oxidation are examined. Heat exchange by transferring the excess enthalpy in the product gas to the feed gas is achieved in the reactor where the temperature of the feed gas before entering the catalyst bed can be promoted to around 100 °C. The experimental results indicate that a methanol flow rate of 0.5 mL min−1 leads to more H2 production compared to those obtained with a flow rate of 0.6 mL min−1. In the conducted Swiss-roll reactor, oxygen supply plays an important role in accomplishing the partial oxidation, and the O2/M ratio should be controlled beyond 1.0. By increasing the O2 concentration, the H2 concentration at O2/M = 1.5 increases from 18.5 to 21.8%. However, the H2 yield decreases, resulting from progressively dominant combustion mechanism. At a fixed gas hourly space velocity of 10,000 h−1, the optimal O2/M ratio for H2 production is 2.5, for which the H2 concentration and H2 yield are 23.5% and 1.93 mol (mol methanol)−1, respectively. The highest H2 yield is close to the theoretical result. Overall, methanol partial oxidation along with heat recirculation in the Swiss-roll reactor can efficiently produce H2, and the excess enthalpy recovery in the reactor can improve energy utilization.

Original languageEnglish
Pages (from-to)79-88
Number of pages10
JournalApplied Energy
Volume232
DOIs
Publication statusPublished - 2018 Dec 15

Fingerprint

methanol
Methanol
oxidation
Oxidation
Flow rate
Gases
enthalpy
gas
Enthalpy
catalyst
Hot Temperature
reactor
hydrogen
Oxygen supply
Catalysts
carbon emission
Hydrogen production
Ion exchange
Energy utilization
combustion

All Science Journal Classification (ASJC) codes

  • Building and Construction
  • Energy(all)
  • Mechanical Engineering
  • Management, Monitoring, Policy and Law

Cite this

@article{60a4bba7ab6441069ebb69cb6ebd036b,
title = "Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor",
abstract = "Hydrogen production with high efficiency is a crucial issue for prospective hydrogen economy and carbon emission reduction. Methanol partial oxidation triggered over an h-BN-Pt/Al2O3 catalyst from a cold start in a Swiss-roll reactor with heat recirculation are investigated experimentally. The effects of methanol flow rate (0.5 and 0.6 mL min−1), O2 concentration (21–35 vol{\%}), and O2-to-methanol (O2/M) molar ratio (1.0–3.0) on the performance of methanol partial oxidation are examined. Heat exchange by transferring the excess enthalpy in the product gas to the feed gas is achieved in the reactor where the temperature of the feed gas before entering the catalyst bed can be promoted to around 100 °C. The experimental results indicate that a methanol flow rate of 0.5 mL min−1 leads to more H2 production compared to those obtained with a flow rate of 0.6 mL min−1. In the conducted Swiss-roll reactor, oxygen supply plays an important role in accomplishing the partial oxidation, and the O2/M ratio should be controlled beyond 1.0. By increasing the O2 concentration, the H2 concentration at O2/M = 1.5 increases from 18.5 to 21.8{\%}. However, the H2 yield decreases, resulting from progressively dominant combustion mechanism. At a fixed gas hourly space velocity of 10,000 h−1, the optimal O2/M ratio for H2 production is 2.5, for which the H2 concentration and H2 yield are 23.5{\%} and 1.93 mol (mol methanol)−1, respectively. The highest H2 yield is close to the theoretical result. Overall, methanol partial oxidation along with heat recirculation in the Swiss-roll reactor can efficiently produce H2, and the excess enthalpy recovery in the reactor can improve energy utilization.",
author = "Chen, {Wei Hsin} and Guo, {Yu Zhi} and Chen, {Chih Chun}",
year = "2018",
month = "12",
day = "15",
doi = "10.1016/j.apenergy.2018.09.208",
language = "English",
volume = "232",
pages = "79--88",
journal = "Applied Energy",
issn = "0306-2619",
publisher = "Elsevier BV",

}

Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor. / Chen, Wei Hsin; Guo, Yu Zhi; Chen, Chih Chun.

In: Applied Energy, Vol. 232, 15.12.2018, p. 79-88.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Methanol partial oxidation accompanied by heat recirculation in a Swiss-roll reactor

AU - Chen, Wei Hsin

AU - Guo, Yu Zhi

AU - Chen, Chih Chun

PY - 2018/12/15

Y1 - 2018/12/15

N2 - Hydrogen production with high efficiency is a crucial issue for prospective hydrogen economy and carbon emission reduction. Methanol partial oxidation triggered over an h-BN-Pt/Al2O3 catalyst from a cold start in a Swiss-roll reactor with heat recirculation are investigated experimentally. The effects of methanol flow rate (0.5 and 0.6 mL min−1), O2 concentration (21–35 vol%), and O2-to-methanol (O2/M) molar ratio (1.0–3.0) on the performance of methanol partial oxidation are examined. Heat exchange by transferring the excess enthalpy in the product gas to the feed gas is achieved in the reactor where the temperature of the feed gas before entering the catalyst bed can be promoted to around 100 °C. The experimental results indicate that a methanol flow rate of 0.5 mL min−1 leads to more H2 production compared to those obtained with a flow rate of 0.6 mL min−1. In the conducted Swiss-roll reactor, oxygen supply plays an important role in accomplishing the partial oxidation, and the O2/M ratio should be controlled beyond 1.0. By increasing the O2 concentration, the H2 concentration at O2/M = 1.5 increases from 18.5 to 21.8%. However, the H2 yield decreases, resulting from progressively dominant combustion mechanism. At a fixed gas hourly space velocity of 10,000 h−1, the optimal O2/M ratio for H2 production is 2.5, for which the H2 concentration and H2 yield are 23.5% and 1.93 mol (mol methanol)−1, respectively. The highest H2 yield is close to the theoretical result. Overall, methanol partial oxidation along with heat recirculation in the Swiss-roll reactor can efficiently produce H2, and the excess enthalpy recovery in the reactor can improve energy utilization.

AB - Hydrogen production with high efficiency is a crucial issue for prospective hydrogen economy and carbon emission reduction. Methanol partial oxidation triggered over an h-BN-Pt/Al2O3 catalyst from a cold start in a Swiss-roll reactor with heat recirculation are investigated experimentally. The effects of methanol flow rate (0.5 and 0.6 mL min−1), O2 concentration (21–35 vol%), and O2-to-methanol (O2/M) molar ratio (1.0–3.0) on the performance of methanol partial oxidation are examined. Heat exchange by transferring the excess enthalpy in the product gas to the feed gas is achieved in the reactor where the temperature of the feed gas before entering the catalyst bed can be promoted to around 100 °C. The experimental results indicate that a methanol flow rate of 0.5 mL min−1 leads to more H2 production compared to those obtained with a flow rate of 0.6 mL min−1. In the conducted Swiss-roll reactor, oxygen supply plays an important role in accomplishing the partial oxidation, and the O2/M ratio should be controlled beyond 1.0. By increasing the O2 concentration, the H2 concentration at O2/M = 1.5 increases from 18.5 to 21.8%. However, the H2 yield decreases, resulting from progressively dominant combustion mechanism. At a fixed gas hourly space velocity of 10,000 h−1, the optimal O2/M ratio for H2 production is 2.5, for which the H2 concentration and H2 yield are 23.5% and 1.93 mol (mol methanol)−1, respectively. The highest H2 yield is close to the theoretical result. Overall, methanol partial oxidation along with heat recirculation in the Swiss-roll reactor can efficiently produce H2, and the excess enthalpy recovery in the reactor can improve energy utilization.

UR - http://www.scopus.com/inward/record.url?scp=85054270595&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85054270595&partnerID=8YFLogxK

U2 - 10.1016/j.apenergy.2018.09.208

DO - 10.1016/j.apenergy.2018.09.208

M3 - Article

AN - SCOPUS:85054270595

VL - 232

SP - 79

EP - 88

JO - Applied Energy

JF - Applied Energy

SN - 0306-2619

ER -