Abstract
The oxidation rate constants of mercury gas (Hg 0) are difficult to determine because Hg 0 easily adsorbs on reactor walls and the reactions can be catalyzed by the solid surface. Also, the UV light which is commonly used to monitor the Hg 0 concentration can accelerate the reaction. We have demonstrated a procedure that allows the determination of gas-phase, surface-catalyzed, and photoinduced contributions in the kinetic study of the reaction of Hg 0 with chlorine gas. By experimenting with several reactors having different surface-to-volume ratios, the relative contributions of gas-phase and surface-catalyzed reactions were determined. The pressure-dependent study revealed that the gas-phase oxidation was by means of a three-body collision process. The third-order rate constant was determined to be 7.5 (±0.2) × 10 -39 cm 6.molecules -2.s -1 with N 2 as the third body at 297 ± 1°K. The surface catalyzed reaction on a quartz window was second order, and the rate constant was 2.7 × 10 -17 mL 2.molecules -1.cm -2 sec. The photoinduced contribution was obtained by comparing the Hg 0 decay rate between continuous and intermittent irradiations. The utilization efficiency of 253.7 nm photons for Hg 0 oxidations at a chlorine concentration of 6.5 × 10 15 molecules·mL -1 was <6.7 × 10 -4 molecules·photon -1.
Original language | English |
---|---|
Pages (from-to) | 5567-5574 |
Number of pages | 8 |
Journal | Industrial and Engineering Chemistry Research |
Volume | 44 |
Issue number | 15 |
DOIs | |
Publication status | Published - 2005 Jul 20 |
All Science Journal Classification (ASJC) codes
- Chemistry(all)
- Chemical Engineering(all)
- Industrial and Manufacturing Engineering