Mg2Fe2O5Nanoparticle-Decorated Ca2Fe2O5-CaFe2O4Heterostructure for Efficient Photocatalytic CO2Conversion

You Hao Chang, Wei Che Tseng, Chao Cheng Kaun, Yen Hsun Su, Jih Jen Wu

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

In this work, a CaFe2O4porous network and a Mg2Fe2O5nanoparticle (NP)-decorated Ca2Fe2O5-CaFe2O4heterostructure are synthesized using the solution combustion method. Ca2Fe2O5and Mg2Fe2O5NPs are incorporated into the CaFe2O4network based on density functional theory (DFT) calculations for enhancing the CO2adsorption of the heterostructure. With the addition of Ca2Fe2O5and Mg2Fe2O5NPs, this CaFe2O4-based heterostructure demonstrates significantly improved photocatalytic activity for CO2conversion compared to the pristine CaFe2O4network. CH4and CH3CHO are produced, and there is no H2detected from the photocatalytic conversion of CO2and H2O over the Mg2Fe2O5NP-decorated Ca2Fe2O5-CaFe2O4heterostructure. Selectivities of 81.7 and 18.3%, respectively, for CH4and CH3CHO are achieved in this process. DFT calculations indicate that among the three components in the heterostructure, Ca2Fe2O5is the active site with the lowest activation energy for the conversion of CO2and H2O to CH4. Type-II charge transfer dynamics is suggested to take place in the staggered CaFe2O4-Ca2Fe2O5heterojunction to improve charge separation, which allows the photoelectrons to be well collected on the Ca2Fe2O5side for the reduction of CO2. Accordingly, the CO2adsorption, charge separation, and surface CO2conversion efficiencies are all enhanced with the incorporation of Ca2Fe2O5and Mg2Fe2O5into the CaFe2O4porous network, resulting in the boosted photocatalytic activity for CO2conversion in the Mg2Fe2O5NP-decorated CaFe2O4-Ca2Fe2O5heterostructure.

Original languageEnglish
Pages (from-to)12651-12658
Number of pages8
JournalACS Sustainable Chemistry and Engineering
Volume10
Issue number38
DOIs
Publication statusPublished - 2022 Sept 26

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Mg2Fe2O5Nanoparticle-Decorated Ca2Fe2O5-CaFe2O4Heterostructure for Efficient Photocatalytic CO2Conversion'. Together they form a unique fingerprint.

Cite this