Microfabricated silicon carbide microengine structures

Kevin A. Lohner, Kuo Shen Chen, Arturo A. Ayon, S. Mark Spearing

Research output: Contribution to journalConference articlepeer-review

22 Citations (Scopus)

Abstract

A research and development program is underway to develop technology for a MEMS-based micro-gas turbine engine. The thermodynamic requirements of power-generating turbomachinery drive the design towards high rotational speeds and high temperatures. To achieve the specified performance requires materials with high specific strength and creep resistance at elevated temperatures. The thermal and mechanical properties of silicon carbide make it an attractive candidate for such an application. Silicon carbide as well as silicon-silicon carbide hybrid structures are being designed and fabricated utilizing chemical vapor deposition of relatively thick silicon carbide layers (10-100 μm) over time multiplexed deep etched silicon molds. The silicon can be selectively dissolved away to yield high aspect ratio silicon carbide structures with features that are hundreds of microns tall. Research has been performed to characterize the capabilities of this process. Specimens obtained to date show very good conformality and step coverage with a fine (≈0.1 μm dia.) columnar microstructure. Surface roughness (Rq) of the films is on the order of 100 nm, becoming rougher with thicker deposition. Residual stress limits the achievable thickness, as the strain energy contained within the compressive film increases its susceptibility to cracking. Room temperature biaxial mechanical testing of CVD silicon carbide exhibits a reference strength of 724 MPa with a Weibull modulus, m = 16.0.

Original languageEnglish
Pages (from-to)85-90
Number of pages6
JournalMaterials Research Society Symposium - Proceedings
Volume546
Publication statusPublished - 1999
EventProceedings of the 1998 MRS Fall Meeting - Symposium AA,Materials Science of Microelectromechanical Systems (MEMS) - Boston, MA, USA
Duration: 1998 Dec 11998 Dec 2

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Microfabricated silicon carbide microengine structures'. Together they form a unique fingerprint.

Cite this