Microstructure and high temperature charge-discharge characteristics of 3D additive manufacturing produced Mg-Ni anode

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

This study applied a 3D additive manufacturing technique to produce a stable and high performance Mg-Ni alloy anode for lithium ion batteries. This 3D process used Mg-Ni powders to printed two layers on copper foil to obtain the Mg-Ni anodes directly, the 3D printed anodes have not need the traditional stir-slurry, coating and baking processes, and process the performances of high efficiency and low coat. Experiment results show that Mg2Ni, MgNi2 and Mg2Cu intermetallic compounds (IMC) are benefit for 3D printed anode, the anode can slowly form a dense and thick SEI layer at 55°C high temperature charge-discharge; therefore, a better capacity than at 25°C can be achieved. The 85°C charge-discharge environment makes the volume expansion effect serious, which results in capacity decay slightly. The presented high temperature charge-discharge capacities are higher than that of the commercial lithium battery, demonstrate that 3D additive manufacturing can fabricate the novel alloy electrodes simply and quickly, and that 3D Mg-Ni anodes are very suitable for today's high-end electronic products.

Original languageEnglish
Pages (from-to)685-689
Number of pages5
JournalMaterials Transactions
Volume59
Issue number4
DOIs
Publication statusPublished - 2018 Jan 1

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Microstructure and high temperature charge-discharge characteristics of 3D additive manufacturing produced Mg-Ni anode'. Together they form a unique fingerprint.

  • Cite this