TY - JOUR
T1 - Mitochondria of highly metastatic breast cancer cell line MDA-MB-231 exhibits increased autophagic properties
AU - Tu, Yi Fang
AU - Kaipparettu, Benny A.
AU - Ma, Yewei
AU - Wong, Lee Jun C.
N1 - Funding Information:
Grant Support: This study is supported in part by NIH grant CA10023 , Department of Defense U.S. Army Breast Cancer Research Program Grant W81XWH-04-1-0650 , and Graduate Students Study Abroad Program and Grants from Taiwan National Science Council (NSC: 95-2314-B-006-067 and 96-2341-B-006-016-MY2 ).
PY - 2011/9
Y1 - 2011/9
N2 - Autophagy is a cellular housekeeping process that removes damaged or unwanted cellular components and recycles them to build new constituents. It is essential for tumor growth under adverse environment. Mitochondria play an important role in the formation of autophagosome and its subsequent docking and fusion with lysosome. To understand the contribution of mitochondria to the regulation of homeostatic autophagy in cancer cells, we used the transmitochondrial cytoplasmic hybrid (cybrid) model. Cybrid system allowed us to compare mitochondria from different cell types including highly metastatic breast cancer cell line MDA-MB-231 (c231), less metastatic breast cancer cell lines: MDA-MB-436 (c436) and MDA-MB-468 (c468), as well as non-cancerous mammary epithelial cell MCF-10A (c10A) in a defined nuclear background. The c231 exhibited lower LC3-II levels but higher ratio of LC3-II/LC3-I than c436, c468 and c10A. In addition, c231 displayed more punctate LC3-positive cells and had lower levels of sequestosome 1 (p62/SQSTM1) than other cybrids. These suggested that mitochondria could contribute to the increased autophagy and autophagic flux in metastatic cancer. This increased autophagy was found to be non-selective autophagy instead of selective mitophagy since LC3 puncta in c231 did not co-localize with mitochondria labeled by Mitotracker red or Tomm 20. The promotion of mitochondrial permeability transition (MPT) in c231 also contributed to increased autophagy. Block of MPT by the inhibition of low-conductance stage of MPT pores resulted in a decrease of LC3 puncta in c231. These results suggested that mitochondria from highly metastatic breast cancer cell line MDA-MB-231 can promote homeostatic autophagy of cancer through opening low-conductance MPT pores.
AB - Autophagy is a cellular housekeeping process that removes damaged or unwanted cellular components and recycles them to build new constituents. It is essential for tumor growth under adverse environment. Mitochondria play an important role in the formation of autophagosome and its subsequent docking and fusion with lysosome. To understand the contribution of mitochondria to the regulation of homeostatic autophagy in cancer cells, we used the transmitochondrial cytoplasmic hybrid (cybrid) model. Cybrid system allowed us to compare mitochondria from different cell types including highly metastatic breast cancer cell line MDA-MB-231 (c231), less metastatic breast cancer cell lines: MDA-MB-436 (c436) and MDA-MB-468 (c468), as well as non-cancerous mammary epithelial cell MCF-10A (c10A) in a defined nuclear background. The c231 exhibited lower LC3-II levels but higher ratio of LC3-II/LC3-I than c436, c468 and c10A. In addition, c231 displayed more punctate LC3-positive cells and had lower levels of sequestosome 1 (p62/SQSTM1) than other cybrids. These suggested that mitochondria could contribute to the increased autophagy and autophagic flux in metastatic cancer. This increased autophagy was found to be non-selective autophagy instead of selective mitophagy since LC3 puncta in c231 did not co-localize with mitochondria labeled by Mitotracker red or Tomm 20. The promotion of mitochondrial permeability transition (MPT) in c231 also contributed to increased autophagy. Block of MPT by the inhibition of low-conductance stage of MPT pores resulted in a decrease of LC3 puncta in c231. These results suggested that mitochondria from highly metastatic breast cancer cell line MDA-MB-231 can promote homeostatic autophagy of cancer through opening low-conductance MPT pores.
UR - http://www.scopus.com/inward/record.url?scp=79960562353&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79960562353&partnerID=8YFLogxK
U2 - 10.1016/j.bbabio.2011.04.015
DO - 10.1016/j.bbabio.2011.04.015
M3 - Article
C2 - 21570379
AN - SCOPUS:79960562353
SN - 0005-2728
VL - 1807
SP - 1125
EP - 1132
JO - Biochimica et Biophysica Acta - Bioenergetics
JF - Biochimica et Biophysica Acta - Bioenergetics
IS - 9
ER -