Model analyses of visual biofeedback training for EEG-based brain-computer interface

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The primary goal of this study was to construct a simulation model of a biofeedback brain-computer interface (BCI) system to analyze the effect of biofeedback training on BCI users. A mathematical model of a man-machine visual-biofeedback BCI system was constructed to simulate a subject using a BCI system to control cursor movements. The model consisted of a visual tracking system, a thalamo-cortical model for EEG generation, and a BCI system. The BCI system in the model was realized for real experiments of visual biofeedback training. Ten sessions of visual biofeedback training were performed in eight normal subjects during a 3-week period. The task was to move a cursor horizontally across a screen, or to hold it at the screen's center. Experimental conditions and EEG data obtained from real experiments were then simulated with the model. Three model parameters, representing the adaptation rate of gain in the visual tracking system and the relative synaptic strength between the thalamic reticular and thalamo-cortical cells in the Rolandic areas, were estimated by optimization techniques so that the performance of the model best fitted the experimental results. The serial changes of these parameters over the ten sessions, reflecting the effects of biofeedback training, were analyzed. The model simulation could reproduce results similar to the experimental data. The group mean success rate and information transfer rate improved significantly after training (56.6 to 81.1% and 0.19 to 0.76 bits/trial, respectively). All three model parameters displayed similar and statistically significant increasing trends with time. Extensive simulation with systematic changes of these parameters also demonstrated that assigning larger values to the parameters improved the BCI performance. We constructed a model of a biofeedback BCI system that could simulate experimental data and the effect of training. The simulation results implied that the improvement was achieved through a quicker adaptation rate in visual tracking gain and a larger synaptic gain from the visual tracking system to the thalamic reticular cells. In addition to the purpose of this study, the constructed biofeedback BCI model can also be used both to investigate the effects of different biofeedback paradigms and to test, estimate, or predict the performances of other newly developed BCI signal processing algorithms.

Original languageEnglish
Pages (from-to)357-368
Number of pages12
JournalJournal of Computational Neuroscience
Volume27
Issue number3
DOIs
Publication statusPublished - 2009 Apr 9

Fingerprint

Brain-Computer Interfaces
Electroencephalography
Computer Systems
Computer Simulation
Theoretical Models

All Science Journal Classification (ASJC) codes

  • Sensory Systems
  • Cognitive Neuroscience
  • Cellular and Molecular Neuroscience

Cite this

@article{4bc8e4d408a6453bbbcf37672a9009a0,
title = "Model analyses of visual biofeedback training for EEG-based brain-computer interface",
abstract = "The primary goal of this study was to construct a simulation model of a biofeedback brain-computer interface (BCI) system to analyze the effect of biofeedback training on BCI users. A mathematical model of a man-machine visual-biofeedback BCI system was constructed to simulate a subject using a BCI system to control cursor movements. The model consisted of a visual tracking system, a thalamo-cortical model for EEG generation, and a BCI system. The BCI system in the model was realized for real experiments of visual biofeedback training. Ten sessions of visual biofeedback training were performed in eight normal subjects during a 3-week period. The task was to move a cursor horizontally across a screen, or to hold it at the screen's center. Experimental conditions and EEG data obtained from real experiments were then simulated with the model. Three model parameters, representing the adaptation rate of gain in the visual tracking system and the relative synaptic strength between the thalamic reticular and thalamo-cortical cells in the Rolandic areas, were estimated by optimization techniques so that the performance of the model best fitted the experimental results. The serial changes of these parameters over the ten sessions, reflecting the effects of biofeedback training, were analyzed. The model simulation could reproduce results similar to the experimental data. The group mean success rate and information transfer rate improved significantly after training (56.6 to 81.1{\%} and 0.19 to 0.76 bits/trial, respectively). All three model parameters displayed similar and statistically significant increasing trends with time. Extensive simulation with systematic changes of these parameters also demonstrated that assigning larger values to the parameters improved the BCI performance. We constructed a model of a biofeedback BCI system that could simulate experimental data and the effect of training. The simulation results implied that the improvement was achieved through a quicker adaptation rate in visual tracking gain and a larger synaptic gain from the visual tracking system to the thalamic reticular cells. In addition to the purpose of this study, the constructed biofeedback BCI model can also be used both to investigate the effects of different biofeedback paradigms and to test, estimate, or predict the performances of other newly developed BCI signal processing algorithms.",
author = "Chen, {Chih Wei} and Ming-Shaung Ju and Yung-Nien Sun and Chou-Ching Lin",
year = "2009",
month = "4",
day = "9",
doi = "10.1007/s10827-009-0148-4",
language = "English",
volume = "27",
pages = "357--368",
journal = "Journal of Computational Neuroscience",
issn = "0929-5313",
publisher = "Springer Netherlands",
number = "3",

}

Model analyses of visual biofeedback training for EEG-based brain-computer interface. / Chen, Chih Wei; Ju, Ming-Shaung; Sun, Yung-Nien; Lin, Chou-Ching.

In: Journal of Computational Neuroscience, Vol. 27, No. 3, 09.04.2009, p. 357-368.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Model analyses of visual biofeedback training for EEG-based brain-computer interface

AU - Chen, Chih Wei

AU - Ju, Ming-Shaung

AU - Sun, Yung-Nien

AU - Lin, Chou-Ching

PY - 2009/4/9

Y1 - 2009/4/9

N2 - The primary goal of this study was to construct a simulation model of a biofeedback brain-computer interface (BCI) system to analyze the effect of biofeedback training on BCI users. A mathematical model of a man-machine visual-biofeedback BCI system was constructed to simulate a subject using a BCI system to control cursor movements. The model consisted of a visual tracking system, a thalamo-cortical model for EEG generation, and a BCI system. The BCI system in the model was realized for real experiments of visual biofeedback training. Ten sessions of visual biofeedback training were performed in eight normal subjects during a 3-week period. The task was to move a cursor horizontally across a screen, or to hold it at the screen's center. Experimental conditions and EEG data obtained from real experiments were then simulated with the model. Three model parameters, representing the adaptation rate of gain in the visual tracking system and the relative synaptic strength between the thalamic reticular and thalamo-cortical cells in the Rolandic areas, were estimated by optimization techniques so that the performance of the model best fitted the experimental results. The serial changes of these parameters over the ten sessions, reflecting the effects of biofeedback training, were analyzed. The model simulation could reproduce results similar to the experimental data. The group mean success rate and information transfer rate improved significantly after training (56.6 to 81.1% and 0.19 to 0.76 bits/trial, respectively). All three model parameters displayed similar and statistically significant increasing trends with time. Extensive simulation with systematic changes of these parameters also demonstrated that assigning larger values to the parameters improved the BCI performance. We constructed a model of a biofeedback BCI system that could simulate experimental data and the effect of training. The simulation results implied that the improvement was achieved through a quicker adaptation rate in visual tracking gain and a larger synaptic gain from the visual tracking system to the thalamic reticular cells. In addition to the purpose of this study, the constructed biofeedback BCI model can also be used both to investigate the effects of different biofeedback paradigms and to test, estimate, or predict the performances of other newly developed BCI signal processing algorithms.

AB - The primary goal of this study was to construct a simulation model of a biofeedback brain-computer interface (BCI) system to analyze the effect of biofeedback training on BCI users. A mathematical model of a man-machine visual-biofeedback BCI system was constructed to simulate a subject using a BCI system to control cursor movements. The model consisted of a visual tracking system, a thalamo-cortical model for EEG generation, and a BCI system. The BCI system in the model was realized for real experiments of visual biofeedback training. Ten sessions of visual biofeedback training were performed in eight normal subjects during a 3-week period. The task was to move a cursor horizontally across a screen, or to hold it at the screen's center. Experimental conditions and EEG data obtained from real experiments were then simulated with the model. Three model parameters, representing the adaptation rate of gain in the visual tracking system and the relative synaptic strength between the thalamic reticular and thalamo-cortical cells in the Rolandic areas, were estimated by optimization techniques so that the performance of the model best fitted the experimental results. The serial changes of these parameters over the ten sessions, reflecting the effects of biofeedback training, were analyzed. The model simulation could reproduce results similar to the experimental data. The group mean success rate and information transfer rate improved significantly after training (56.6 to 81.1% and 0.19 to 0.76 bits/trial, respectively). All three model parameters displayed similar and statistically significant increasing trends with time. Extensive simulation with systematic changes of these parameters also demonstrated that assigning larger values to the parameters improved the BCI performance. We constructed a model of a biofeedback BCI system that could simulate experimental data and the effect of training. The simulation results implied that the improvement was achieved through a quicker adaptation rate in visual tracking gain and a larger synaptic gain from the visual tracking system to the thalamic reticular cells. In addition to the purpose of this study, the constructed biofeedback BCI model can also be used both to investigate the effects of different biofeedback paradigms and to test, estimate, or predict the performances of other newly developed BCI signal processing algorithms.

UR - http://www.scopus.com/inward/record.url?scp=70350571729&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=70350571729&partnerID=8YFLogxK

U2 - 10.1007/s10827-009-0148-4

DO - 10.1007/s10827-009-0148-4

M3 - Article

C2 - 19357940

AN - SCOPUS:70350571729

VL - 27

SP - 357

EP - 368

JO - Journal of Computational Neuroscience

JF - Journal of Computational Neuroscience

SN - 0929-5313

IS - 3

ER -