Abstract
Synchrotron-based high-resolution photoelectron spectroscopy was applied to study the modification of the alkanethiol (AT) self-assembled monolayers on gold and silver substrates by nitrogen-oxygen downstream microwave plasma. Because of the low density and energy of the ionizing particles, the long-lived nitrogen and oxygen radicals provided the major impact of plasma treatment. The treatment resulted in massive damage and disordering of the initially well-ordered and chemically homogeneous AT films. The most pronounced processes are the complete (AT/Au) or partial (AT/Ag) oxidation of the pristine thiolate species, partial desorption of hydrogen and carbon-containing fragments with subsequent cross-linking within the residual hydrocarbon layer, and partial oxidation of this layer, and appearance of the nitrogen-containing entities. The plasma-treatment-induced changes in the alkyl matrix and at the S-substrate interface are only partly correlated. The rate and extent of the oxidation processes at this interface are noticeably larger for C18/Au than for C18/Ag, which suggests a stronger S-metal bond in the latter system. The results demonstrate that a smallest oxygen contamination should be avoided if one wants to perform a soft modification of thin organic layers or definite molecular entities attached to these layers through the exposure to plasma.
Original language | English |
---|---|
Pages (from-to) | 77-84 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry B |
Volume | 106 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2002 Jan 10 |
All Science Journal Classification (ASJC) codes
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films
- Materials Chemistry