Modulating antibacterial immunity via bacterial membrane-coated nanoparticles

Weiwei Gao, Ronnie H. Fang, Soracha Thamphiwatana, Brian T. Luk, Jieming Li, Pavimol Angsantikul, Qiangzhe Zhang, Che Ming J. Hu, Liangfang Zhang

Research output: Contribution to journalArticlepeer-review

165 Citations (Scopus)

Abstract

Synthetic nanoparticles coated with cellular membranes have been increasingly explored to harness natural cell functions toward the development of novel therapeutic strategies. Herein, we report on a unique bacterial membrane-coated nanoparticle system as a new and exciting antibacterial vaccine. Using Escherichia coli as a model pathogen, we collect bacterial outer membrane vesicles (OMVs) and successfully coat them onto small gold nanoparticles (AuNPs) with a diameter of 30 nm. The resulting bacterial membrane-coated AuNPs (BM-AuNPs) show markedly enhanced stability in biological buffer solutions. When injected subcutaneously, the BM-AuNPs induce rapid activation and maturation of dendritic cells in the lymph nodes of the vaccinated mice. In addition, vaccination with BM-AuNPs generates antibody responses that are durable and of higher avidity than those elicited by OMVs only. The BM-AuNPs also induce an elevated production of interferon gamma (INFγ) and interleukin-17 (IL-17), but not interleukin-4 (IL-4), indicating its capability of generating strong Th1 and Th17 biased cell responses against the source bacteria. These observed results demonstrate that using natural bacterial membranes to coat synthetic nanoparticles holds great promise for designing effective antibacterial vaccines.

Original languageEnglish
Pages (from-to)1403-1409
Number of pages7
JournalNano letters
Volume15
Issue number2
DOIs
Publication statusPublished - 2015 Feb 11

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Modulating antibacterial immunity via bacterial membrane-coated nanoparticles'. Together they form a unique fingerprint.

Cite this