Molecular dynamics simulation of Cu-Zr-Al metallic-glass films under indentation

Yun Che Wang, Chun Yi Wu

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

In this paper, the (Cu50Zr50)100-xAl x (X = 0, 2, 4, 5, 6, 8, 10, 12, atomic percent) metallic-glass thin films on the titanium crystalline substrate were constructed by using molecular dynamics (MD) to simulate sputter deposition. The deposition simulations adopted a tight-binding potential with consideration of argon working gas from the pair-wise Moliere potential. The as-deposited films were amorphous and used as initial structures for nano-indentation simulations with a right-angle conical indenter tip to obtain their mechanical properties. All simulations were carried out at temperature 300 K to compare with experimental data. The radial distribution function of the film is calculated and compared with synchrotron experimental data. From the nanoindentation simulations, the hardness and Young's modulus of the films were calculated, as well as the pileup index under two different depth-to-thickness ratios. Our MD simulation results are consistent with experimental data. Furthermore, atomic strains were calculated to reveal deformation localization. In addition, elastic constants of the film and associated degrees of elastic anisotropy were studied to correlate structural anisotropy and to reveal structural relaxation. It is found that the deposited and MD-equilibrated films have notable anisotropic elastic constants, and their relaxation can be observed at the MD time scales.

Original languageEnglish
Pages (from-to)114-119
Number of pages6
JournalThin Solid Films
Volume561
DOIs
Publication statusPublished - 2014 Jun 30

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Molecular dynamics simulation of Cu-Zr-Al metallic-glass films under indentation'. Together they form a unique fingerprint.

Cite this