Molecular dynamics study of catanionic bilayers composed of ion pair amphiphile with double-tailed cationic surfactant

An Tsung Kuo, Chien-Hsiang Chang, Wataru Shinoda

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

The physical stability of catanionic vesicles is important for the development of novel drug or DNA carriers. For investigating the mechanism by which catanionic vesicles are stabilized, molecular dynamics (MD) simulation is an attractive approach that provides microscopic structural information on the vesicular bilayer. In this study, MD simulation was applied to investigate the bilayer properties of catanionic vesicles composed of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), and a double-tailed cationic surfactant, ditetradecyldimethylammonium chloride (DTDAC). Structural information regarding membrane elasticity and the organization and conformation of surfactant molecules was obtained based on the resulting trajectory. Simulation results showed that a proper amount of DTDAC could be used to complement the asymmetric structure between HTMA and DS, resulting in an ordered hydrocarbon chain packing within the rigid membrane observed in the mixed HTMA-DS/DTDAC system. The coexistence of gel and fluid phases was also observed in the presence of excess DTDAC. MD simulation results agreed well with results obtained from experimental studies examining mixed HTMA-DS/DTDAB vesicles.

Original languageEnglish
Pages (from-to)8156-8164
Number of pages9
JournalLangmuir
Volume28
Issue number21
DOIs
Publication statusPublished - 2012 May 29

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Molecular dynamics study of catanionic bilayers composed of ion pair amphiphile with double-tailed cationic surfactant'. Together they form a unique fingerprint.

Cite this