Morphology and immersion behavior of plasma-sprayed hydroxyapatite/bioactive glass coatings

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)


A series of hydroxyapatite/bioactive glass (HA/BG) coatings have been plasma-sprayed on Ti6Al-4V substrate using HA/BG powders that were prepared by both sinter-granulation and direct mixing methods. The morphology and immersion behavior of these coatings in a simulated body fluid (SBF) were investigated. The results showed that in-house fabricated BG and sinter-granulated HA powders were irregularly shaped and dense. When 5 wt% or more BG was added in HA, the powder became rough and porous. X-ray diffraction (XRD) patterns showed that the presence of BG enhanced the decomposition of HA structure during fabrication of the powders. Reasonably high bond strengths were obtained from all coatings. The granulated type HA/BG coatings showed no significant differences in bond strength from the mixed type HA/BG coatings. The plasma spray process itself and the presence of BG enhanced the decomposition of apatite. Surface morphology of all sinter-granulated type coatings was similar to that of monolithic HA coating, that was comprised of patches of smooth and shiny glassy film and irregularly-shaped particles on its surface. The dissolution depth of plasma-sprayed coatings immersed in SBF was largely dependent on the type and composition of the coating. Granulated type HA/BG coatings were much less dissolvable than monolithic HA or mixed type HA/BG coatings. It seems that the presently used granulation method for the preparation of HA/BG powders plays a predominant role in determining the dissolution behavior of the plasma-sprayed coatings.

Original languageEnglish
Pages (from-to)183-190
Number of pages8
JournalJournal of Materials Science: Materials in Medicine
Issue number3
Publication statusPublished - 2000

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering


Dive into the research topics of 'Morphology and immersion behavior of plasma-sprayed hydroxyapatite/bioactive glass coatings'. Together they form a unique fingerprint.

Cite this