TY - GEN
T1 - Multi-graph Zero-knowledge-based authentication system in Internet of Things
AU - Chuang, I. Hsun
AU - Guo, Bing Jie
AU - Tsai, Jen Sheng
AU - Kuo, Yau Hwang
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/7/28
Y1 - 2017/7/28
N2 - Internet of Things (IoT) is an emerging network technology applied to provide various services in our daily life. Generally, IoT environments are composed of numerous heterogeneous devices with constrained resource. The limited capability of IoT devices makes it impractical to perform traditional security mechanisms, and thus IoT services are usually vulnerable to all kinds of security threats, such as impersonation and forgery attacks. Moreover, the inflexible protection provided by these security mechanisms leads to inefficiency because different services haves diverse requirements. To provide IoT services suitable security protection, Multi-graph Zero-knowledge-based Authentication System (M-ZAS), which is not only light-weight but also high-adaptive, is proposed. Compared to traditional authentication mechanisms as well as other Zero-knowledge-proof (ZKP) methods such as GMW-ZKP, M-ZAS provides higher performance and better security protection. In addition, M-ZAS has lower transmission overheads than GMW-ZKP does. Considering relevant contexts as parameters, M-ZAS provides adaptive protection to fulfill what users actually need. Experiment results show that M-ZAS is 3 times faster than GMW-ZKP and even 7 times than traditional authentication mechanisms in IoT devices. Also, M-ZAS reduces 3 times network traffic than GMW-ZKP. Thus, the proposed M-ZAS is the most practical authentication system in IoT environments.
AB - Internet of Things (IoT) is an emerging network technology applied to provide various services in our daily life. Generally, IoT environments are composed of numerous heterogeneous devices with constrained resource. The limited capability of IoT devices makes it impractical to perform traditional security mechanisms, and thus IoT services are usually vulnerable to all kinds of security threats, such as impersonation and forgery attacks. Moreover, the inflexible protection provided by these security mechanisms leads to inefficiency because different services haves diverse requirements. To provide IoT services suitable security protection, Multi-graph Zero-knowledge-based Authentication System (M-ZAS), which is not only light-weight but also high-adaptive, is proposed. Compared to traditional authentication mechanisms as well as other Zero-knowledge-proof (ZKP) methods such as GMW-ZKP, M-ZAS provides higher performance and better security protection. In addition, M-ZAS has lower transmission overheads than GMW-ZKP does. Considering relevant contexts as parameters, M-ZAS provides adaptive protection to fulfill what users actually need. Experiment results show that M-ZAS is 3 times faster than GMW-ZKP and even 7 times than traditional authentication mechanisms in IoT devices. Also, M-ZAS reduces 3 times network traffic than GMW-ZKP. Thus, the proposed M-ZAS is the most practical authentication system in IoT environments.
UR - http://www.scopus.com/inward/record.url?scp=85028345401&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028345401&partnerID=8YFLogxK
U2 - 10.1109/ICC.2017.7996820
DO - 10.1109/ICC.2017.7996820
M3 - Conference contribution
AN - SCOPUS:85028345401
T3 - IEEE International Conference on Communications
BT - 2017 IEEE International Conference on Communications, ICC 2017
A2 - Debbah, Merouane
A2 - Gesbert, David
A2 - Mellouk, Abdelhamid
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 IEEE International Conference on Communications, ICC 2017
Y2 - 21 May 2017 through 25 May 2017
ER -