Multi-graph Zero-knowledge-based authentication system in Internet of Things

I. Hsun Chuang, Bing Jie Guo, Jen Sheng Tsai, Yau Hwang Kuo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Citations (Scopus)


Internet of Things (IoT) is an emerging network technology applied to provide various services in our daily life. Generally, IoT environments are composed of numerous heterogeneous devices with constrained resource. The limited capability of IoT devices makes it impractical to perform traditional security mechanisms, and thus IoT services are usually vulnerable to all kinds of security threats, such as impersonation and forgery attacks. Moreover, the inflexible protection provided by these security mechanisms leads to inefficiency because different services haves diverse requirements. To provide IoT services suitable security protection, Multi-graph Zero-knowledge-based Authentication System (M-ZAS), which is not only light-weight but also high-adaptive, is proposed. Compared to traditional authentication mechanisms as well as other Zero-knowledge-proof (ZKP) methods such as GMW-ZKP, M-ZAS provides higher performance and better security protection. In addition, M-ZAS has lower transmission overheads than GMW-ZKP does. Considering relevant contexts as parameters, M-ZAS provides adaptive protection to fulfill what users actually need. Experiment results show that M-ZAS is 3 times faster than GMW-ZKP and even 7 times than traditional authentication mechanisms in IoT devices. Also, M-ZAS reduces 3 times network traffic than GMW-ZKP. Thus, the proposed M-ZAS is the most practical authentication system in IoT environments.

Original languageEnglish
Title of host publication2017 IEEE International Conference on Communications, ICC 2017
EditorsMerouane Debbah, David Gesbert, Abdelhamid Mellouk
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781467389990
Publication statusPublished - 2017 Jul 28
Event2017 IEEE International Conference on Communications, ICC 2017 - Paris, France
Duration: 2017 May 212017 May 25

Publication series

NameIEEE International Conference on Communications
ISSN (Print)1550-3607


Other2017 IEEE International Conference on Communications, ICC 2017

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Multi-graph Zero-knowledge-based authentication system in Internet of Things'. Together they form a unique fingerprint.

Cite this