TY - JOUR
T1 - Multifunctional and High-Performance FAPBI3 Quantum Dots/Graphene UV Photodetectors by the Modulation of Photoconductivity
AU - Shen, Jun Hao
AU - Yu, Xiu Qi
AU - Tu, Wei Chen
N1 - Funding Information:
This work is supported by the National Science and Technology Council of Taiwan under Grant Nos. 111‐2222‐E‐006‐013 and 111‐2218‐E‐007‐008‐MBK. Measurement equipment is partially supported by the Core Facility Center, National Cheng Kung University, Taiwan.
Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023/9/4
Y1 - 2023/9/4
N2 - Low-dimensional devices with different photoconductive effects attract much attention in optoelectronics. In this work, negative photoconductivity (NPC) monolayer graphene photodetectors are fabricated by chemical vapor deposition (CVD), and a positive photoconductivity (PPC) photodetector is realized by decorating perovskite FAPbI3 quantum dots prepared by a simple and cost-effective non-polar solvent synthesis method on a graphene surface. The graphene-based photodetector exhibits an NPC characteristic, which is attributed to the absorption and desorption of water molecules on the graphene surface. The responsivity of the photodetector with an NPC characteristic is −0.86 A W−1 under intense ultraviolet light irradiation, and the detectivity is −2.45 × 109 Jones. The FAPbI3 quantum dots/graphene photodetector with a PPC feature has a responsivity of 8.03 A W−1 and a detectivity of 1.89 × 1010 Jones under the irradiation of ultraviolet light of 365 nm and 55.3 mW cm−2 intensity. Due to the intense light absorption of perovskite combined with the extremely high mobility of graphene, photodetectors have high exciton separation and photocurrents when the devices are irradiated by ultraviolet light. Individual photodetectors are successfully created with NPC and PPC effects; the critical analysis for the different photoconductive mechanisms is provided, which will benefit the development of future multifunctional systems.
AB - Low-dimensional devices with different photoconductive effects attract much attention in optoelectronics. In this work, negative photoconductivity (NPC) monolayer graphene photodetectors are fabricated by chemical vapor deposition (CVD), and a positive photoconductivity (PPC) photodetector is realized by decorating perovskite FAPbI3 quantum dots prepared by a simple and cost-effective non-polar solvent synthesis method on a graphene surface. The graphene-based photodetector exhibits an NPC characteristic, which is attributed to the absorption and desorption of water molecules on the graphene surface. The responsivity of the photodetector with an NPC characteristic is −0.86 A W−1 under intense ultraviolet light irradiation, and the detectivity is −2.45 × 109 Jones. The FAPbI3 quantum dots/graphene photodetector with a PPC feature has a responsivity of 8.03 A W−1 and a detectivity of 1.89 × 1010 Jones under the irradiation of ultraviolet light of 365 nm and 55.3 mW cm−2 intensity. Due to the intense light absorption of perovskite combined with the extremely high mobility of graphene, photodetectors have high exciton separation and photocurrents when the devices are irradiated by ultraviolet light. Individual photodetectors are successfully created with NPC and PPC effects; the critical analysis for the different photoconductive mechanisms is provided, which will benefit the development of future multifunctional systems.
UR - http://www.scopus.com/inward/record.url?scp=85160272691&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85160272691&partnerID=8YFLogxK
U2 - 10.1002/adom.202300410
DO - 10.1002/adom.202300410
M3 - Article
AN - SCOPUS:85160272691
SN - 2195-1071
VL - 11
JO - Advanced Optical Materials
JF - Advanced Optical Materials
IS - 17
M1 - 2300410
ER -