Multinomial naïve Bayesian classifier with generalized Dirichlet priors for high-dimensional imbalanced data

Tzu Tsung Wong, Hsing Chen Tsai

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

The data-level approach can be used to balance the class distribution in a data set, while generating synthetic instances in a high-dimensional space is an awful task. Naïve Bayesian classifier with multinomial model, called multinomial naïve Bayesian classifier, is a popular classification algorithm for high-dimensional data because of its computational efficiency. However, this algorithm generally cannot have a better performance than the other algorithms on high-dimensional imbalanced data. Generalized Dirichlet distribution that is defined on unit simplex can be priors for multinomial naïve Bayesian classifier. This study proposes methods to find noninformative generalized Dirichlet priors for multinomial naïve Bayesian classifier so that its performance on high-dimensional imbalanced data can be largely improved. The methods are tested on seven high-dimensional imbalanced data sets to demonstrate that the multinomial naïve Bayesian classifier with generalized Dirichlet priors can significantly outperform not only the original multinomial naïve Bayesian classifier, but also random forest and Ripper algorithm.

Original languageEnglish
Article number107288
JournalKnowledge-Based Systems
Volume228
DOIs
Publication statusPublished - 2021 Sept 27

All Science Journal Classification (ASJC) codes

  • Management Information Systems
  • Software
  • Information Systems and Management
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Multinomial naïve Bayesian classifier with generalized Dirichlet priors for high-dimensional imbalanced data'. Together they form a unique fingerprint.

Cite this